STOICHIOMETRY

3.4 Avogadro's Number and the Mole

3.6 Quantitative Information from Balanced Equations

3.7 Limiting Reactants

The Mole

$1 \mathrm{~mol}=6.02 \times 10^{23}$
$6.02 \times 10^{23}=$ Avogadro's number $\left(N_{A}\right)$
1 mol of H atoms $=6.02 \times 10^{23}$ atoms
1 mol of Na^{+}ions $=6.02 \times 10^{23}$ ions
1 mol of CO_{2} molec. $=6.02 \times 10^{23} \mathrm{molec}$.

The Mole

SI unit for amount of substance

The mole (mol) is the amount of a substance that contains as many objects as there are atoms in exactly 12.00 grams of Carbon-12

The Mole

1 mol of particles $=6.02 \times 10^{23}$ particles
This is a conversion factor that allows us to convert between moles \& number of particles (atoms, ions, molecules,....)

$$
\frac{6.02 \times 10^{23}}{1 \mathrm{~mol}} \equiv \frac{1 \mathrm{~mol}}{6.02 \times 10^{23}}
$$

The Mole

How many He atoms are in 1.61 mol He
1.61 motx $\frac{6.02 \times 10^{23} \text { atoms }}{\text { mot }}=9.69 \times 10^{23}$ atoms
mol

©
Dr. A. Gharaibeh

The Mole

How many mol are 9.69×10^{23} atoms of He
9.69×10^{23} atoms $\times \frac{\mathrm{mol}}{6.02 \times 10^{23} \text { atoms }}=1.61 \mathrm{~mol}$
atoms
molecules

apples
(e)

6

The mass of:

$1 \mathrm{~mol}{ }^{12} \mathrm{C}$ atoms $=$	12.00 g
$6.02 \times 10^{23}{ }^{12} \mathrm{C}$ atoms $=$	12.00 g
$\mathcal{M}\left({ }^{12} \mathrm{C}\right)=12.00 \mathrm{~g} / \mathrm{mol}$	

$$
\begin{aligned}
& 23 \mathrm{~g} \mathrm{Na}^{+}=1 \mathrm{~mol} \mathrm{Na}+=6.02 \times 10^{23} \mathrm{Na}^{+} \text {ions } \\
& 24 \mathrm{~g} \mathrm{Mg}=1 \mathrm{~mol} \mathrm{Mg}=6.02 \times 10^{23} \mathrm{Mg} \text { atoms } \\
& 1 \mathrm{~g} \mathrm{H}=1 \mathrm{~mol} \mathrm{H}=6.02 \times 10^{23} \mathrm{H} \text { atoms } \\
& 2 \mathrm{~g} \mathrm{H}_{2}=1 \mathrm{~mol} \mathrm{H}_{2}=6.02 \times 10^{23} \mathrm{H}_{2} \text { molecules } \\
& =2 \times 6.02 \times 10^{23} \mathrm{H} \text { atoms } \\
& 44 \mathrm{~g} \mathrm{CO}_{2}=1 \mathrm{~mol} \mathrm{CO}_{2}=6.02 \times 10^{23} \mathrm{CO}_{2} \text { molecules } \\
& \text { g }
\end{aligned}
$$

Molar masses for molecules:
The sum of molar masses of all atoms in the molecule.

$\begin{array}{ll}\mathrm{SO}_{2} & 1 \\ & 2\end{array}$	$\begin{aligned} & 1 \mathrm{~S} \\ & 20 \end{aligned} \quad+\begin{aligned} & 3 \\ & 2 \end{aligned}$	$7 \mathrm{~g} / \mathrm{mol}$ 6.00) g/mol
$\mathcal{M}\left(\mathbf{S O}_{\mathbf{2}}\right)$	64.	$7 \mathrm{~g} / \mathrm{mol}$
1 molecule SO_{2}	1 S atom	20 atoms
$1 \mathrm{~mol} \mathrm{SO}_{2}$	1 mol S atom	2 mol O atoms
Θ	10	Dr.A. Gharaiben

Which contains more atoms 4 g of ${ }^{4} \mathrm{He}$ or 16 g of ${ }^{16} \mathrm{O}$?
$4 \mathrm{~g} \mathrm{He}=1 \mathrm{~mol} \mathrm{He}=6.022 \times 10^{23} \mathrm{He}$ atoms $16 \mathrm{~g} \mathrm{O}=1 \mathrm{~mol} \mathrm{O}=6.022 \times 10^{23} \mathrm{O}$ atoms

Both contain the same number of atoms

How many moles of He atoms are in 6.46 g of He ?

$$
\mathrm{g} \quad \stackrel{\frac{1}{\mathscr{M}}}{ } \mathrm{~mol}
$$

$6.46 \mathrm{~g}-\mathrm{He} \times \frac{1 \mathrm{~mol} \mathrm{He}}{4.003 \mathrm{~g}-\mathrm{He}}=1.61 \mathrm{~mol} \mathrm{He}$

Convert 1.61 mol of He to g

How many H atoms are in 72.5 g of $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$

$1 \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$ molecule $\equiv \mathbf{8} \mathrm{H}$ atoms
$1 \mathbf{~ m o l ~ C} \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$ molecules $\equiv \mathbf{8} \mathbf{~ m o l ~ H}$ atoms
$\mathcal{M}\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}\right)=3(12)+8(1)+1(16)=60 . \mathrm{g} / \mathrm{mol}$

How many He atoms are in 6.46 g of He ?
$\mathrm{g} \quad \underset{ }{\frac{1}{\mathcal{M}}}$ mol $\ldots \xrightarrow{N_{\mathrm{A}}}$ atoms
6.46 g He $\times \frac{1 \text { mothe }}{4.003 \text { gHe }} \times \frac{6.02 \times 10^{23} \mathrm{He} \text { atoms }}{1 \text { moHte }}$
$=9.72 \times 10^{23} \mathrm{He}$ atoms
Θ 14

How many water molecules present in 2.56 mL of water. $\mathrm{d}=1.00 \mathrm{~g} / \mathrm{mL}$.

(e)

17

Stoichiometry

The study of quantities of materials consumed and produced in chemical reactions.

$$
\underset{\text { Reactants }}{2 \mathrm{CH}_{3} \mathrm{OH}+3 \mathrm{O}_{2}} \rightarrow \underset{\text { Products }}{2 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}}
$$

2, 3, 2, 4: stoichiometric coefficients (mole ratios)

2 mol of $\mathrm{CH}_{3} \mathrm{OH}$ reacts with 3 mol of O_{2} to produce 2 mol of CO_{2} and 4 mol of $\mathrm{H}_{2} \mathrm{O}$

What mass of water is produced if $\mathbf{2 0 9} \mathbf{g}$ of methanol is burned?

```
\[
2 \mathrm{CH}_{3} \mathrm{OH}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}
\]
\[
\begin{array}{ccc}
2 \mathrm{~mol} & 4 & 4 \mathrm{~mol} \\
\frac{1}{M} & 2 & \mathcal{M} \\
209 \mathrm{~g} & \ddots & ? \mathrm{~g}
\end{array}
\]
\[
\mathrm{g} \mathrm{CH}_{3} \mathrm{OH}=\mathrm{mol} \mathrm{CH}_{3} \mathrm{OH}=\mathrm{mol} \mathrm{H}_{2} \mathrm{O}=\mathrm{g} \mathrm{H}_{2} \mathrm{O}
\]
```

$2 \mathrm{CH}_{3} \mathrm{OH}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
$\frac{2 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{OH}}{2 \mathrm{~mol} \mathrm{CO}_{2}} \frac{3 \mathrm{~mol} \mathrm{O}_{2}}{2 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{OH}} \frac{2 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{OH}}{4 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}$
How many moles of oxygen are required to burn 5.00 moles of methanol?
$5.00 \mathrm{~mol}^{-1} \mathrm{CH}_{3} \mathrm{OH} \times \frac{3 \mathrm{~mol} \mathrm{O}_{2}}{2{\mathrm{~mol} \mathrm{CH}_{3} \mathrm{OH}}}=7.50 \mathrm{~mol} \mathrm{O}_{2}$

```
    2CH
g CH3OH =mol CH OH =mol H2O = g H2O
209 g-H3
| moHH2O
= 235 g H2O
O
                    21

What mass of \(\mathrm{O}_{2}\) required to produce 155 \(\mathrm{g} \mathrm{CO}_{2}\) ? \(2 \mathrm{CH}_{3} \mathrm{OH}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}\) \(\mathrm{g} \mathrm{CO}_{2} \quad \mathrm{~mol} \mathrm{CO}_{2} \quad \mathrm{~mol} \mathrm{O}_{2} \quad \mathrm{~g} \mathrm{O}_{2}\) \(155 \mathrm{gCO}_{2} \times \frac{1 \mathrm{moteO}_{2}}{44.0-\mathrm{gCO}_{2}} \times \frac{3 \mathrm{motO}_{2}}{2 \mathrm{moteO}_{2}} \times\) \(\frac{32.0 \mathrm{~g} \mathrm{O}_{2}}{1 \mathrm{mot}_{2}}=169 \mathrm{~g} \mathrm{O}_{2}\)
©
22

\section*{Limiting \& Excess Reactants}

Limiting reactant: The reactant that is consumed first, limiting the amounts of products formed.
\begin{tabular}{|c|c|c|c|}
\hline 2NO & \(+\mathrm{O}_{2}\) & \(\rightarrow\) & \(2 \mathrm{NO}_{2}\) \\
\hline 2 mol & 1 mol & & 2 mol \\
\hline 6 mol & 3 mol & & 6 mol \\
\hline 6 mol & 6 mol & \[
\begin{aligned}
& 3 \text { react } \\
& 3 \text { excess }
\end{aligned}
\] & 6 mol \\
\hline Limiting reactant & Excess reactant & & \\
\hline
\end{tabular}
If 124 g of Al are reacted with 601 g of \(\mathrm{Fe}_{2} \mathrm{O}_{3}\), calculate the mass of \(\mathrm{Al}_{2} \mathrm{O}_{3}\) formed.
\[
\begin{aligned}
& \begin{array}{l}
2 \mathrm{Al}+\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{Fe} \\
\mathrm{~g} \mathrm{Al} \text { have } \longrightarrow \mathrm{mol} \mathrm{Al} \longrightarrow \\
\text { mol Fe} 2 \mathrm{O}_{3} \longrightarrow \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3} \text { needed } \\
\mathrm{OR} \\
\mathrm{~g} \mathrm{Fe} \mathrm{O}_{3} \text { have } \longrightarrow \mathrm{mol} \mathrm{Fe}_{2} \mathrm{O}_{3} \\
\\
\text { mol AI } \longrightarrow \mathrm{g} \mathrm{Al} \mathrm{needed}
\end{array}
\end{aligned}
\]
25
Dr. A. Gharaibeh
\(2 \mathrm{Al}+\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{Fe}\) \(124 \mathrm{~g} \quad 601 \mathrm{~g}\)
Start with \(124 \mathrm{~g} \mathrm{AI} \longrightarrow\) need \(367 \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3}\)
Have more ( 601 g ) \(\mathrm{Fe}_{2} \mathrm{O}_{3}\)
\(\therefore \mathrm{Fe}_{2} \mathrm{O}_{3}\) in EXCESS
Al is LIMITING REACTANT
Use LIMITING REACTANT to calculate amount of product that can form
\[
\begin{aligned}
& 2 \mathrm{Al}+\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{Fe} \\
& 124 \mathrm{~g} \quad 601 \mathrm{~g} \\
& \mathrm{gAl} \longrightarrow \text { mol Al } \longrightarrow \text { mol Fe } \mathrm{O}_{3} \text { needed } \longrightarrow \mathrm{g} \mathrm{Fe}_{2} \mathrm{O}_{3} \text { needed } \\
& 124 \text { gAT } \times \frac{1 \text { motAT }}{27.0 \text { gAT }} \times \frac{1 \mathrm{motFe}_{2} \mathrm{O}_{3}}{2 \text { motAT }} \\
& x \frac{\text { 160. } \mathrm{g} \mathrm{Fe}_{2} \mathrm{O}_{3}}{1 \mathrm{molFe}_{2} \mathrm{O}_{3}}=367 \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3} \text { needed }
\end{aligned}
\]

How many grams \(\mathrm{Al}_{2} \mathrm{O}_{3}\) will form?
```

2AI + Fe2OO3 }->\mp@subsup{\textrm{FI}}{2}{}\mp@subsup{\textrm{O}}{3}{}+2\textrm{Fe
124 g
g AI mol ml }\longrightarrow\mathrm{ mol Al2 O

```

124-gAT \(\times \frac{1 \text { motAT }}{27.0 \text { gAT }} \times \frac{1 \mathrm{mot}^{2} \mathrm{Al}_{2}}{2 \text { motAT }}\)
\[
x \frac{102 \mathrm{~g} \mathrm{Al}_{2} \mathrm{O}_{3}}{1-{\mathrm{mot} \mathrm{Al}_{2} \mathrm{O}_{3}}^{2}}=234 \mathrm{~g} \mathrm{Al}_{2} \mathrm{O}_{3}
\]
\(2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}\)
If 5.00 g of \(\mathrm{H}_{2}\) and 5.00 g of \(\mathrm{O}_{2}\) were reacted, how many grams of \(\mathrm{H}_{2} \mathrm{O}\) will be produced and how many grams of each reactant will remain?
Answer \(=5.63 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} ; 4.37 \mathrm{~g} \mathrm{H}_{2}\).

\section*{Reaction Yield}

Theoretical Yield:
amount of product that would form if all limiting reagent reacted.

\section*{Actual Yield:}
amount of product actually obtained from a reaction.
\[
\% \text { Yield }=\frac{\text { Actual Yield }}{\text { Theoretical Yield }} \times 100 \%
\]
\(\theta\)
30
Dr. A. Gharaibeh
\[
2 \mathrm{C}_{4} \mathrm{H}_{10}+13 \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}_{2}+10 \mathrm{H}_{2} \mathrm{O}
\]

Theoretical yield of \(\mathrm{CO}_{2}\) :
\(5.00 \mathrm{gO}_{2} \times \frac{1 \mathrm{mot}_{2}}{32.0 \mathrm{gO}_{2}} \times \frac{8 \mathrm{moteO}_{2}}{13 \mathrm{mot}_{2}}\)
\(x \frac{44.0 \mathrm{~g} \mathrm{CO}_{2}}{1 \mathrm{moteO}_{2}}=4.23 \mathrm{~g} \mathrm{CO}_{2}\)
\(\%\) Yield \(=\frac{\text { Actual Yield }}{\text { Theoretical Yield }} \times 100\)
\(\%\) Yield \(=\frac{3.56}{4.23} \times 100 \%=84.2 \%\)

\section*{Reaction Yield}

When 5.00 g of \(\mathrm{H}_{2}\) and 5.00 g of \(\mathrm{O}_{2}\) were reacted, the yield of \(\mathrm{H}_{2} \mathrm{O}\) was \(87.9 \%\). What is the actual yield of \(\mathrm{H}_{2} \mathrm{O}\) ?
\(2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}\)
Answer \(=4.95 \mathrm{~g}\)```

