REACTIONS IN AQUEOUS SOLUTION

4.5 Concentrations of Solutions

4.6 Solution Stoichiometry and Chemical Analysis

Molarity (M)

Molarity: number of moles of solute per liter of solution.
$M=\frac{\text { moles solute }}{\mathrm{L} \text { solution }} \equiv \frac{\mathrm{mol}}{\mathrm{L}} \equiv \frac{\mathrm{mmol}}{\mathrm{mL}}$
Number of mol = Mx V(L)
Number of $\mathrm{mmol}=M \times V(\mathrm{~mL})$

Concentrations of Solutions

Solution:

homogeneous mixture of two or more components

Solute + Solvent \rightarrow Solution
Concentration of solute:
either Amount of solute/amount of solvent
or Amount of solutelamount solution
Amount $=$ moles, mass, or volume
e

Molarity (M)

How to prepare 0.250 L of a 1.00 M solution of $\mathrm{CuSO}_{4}(159.6 \mathrm{~g} / \mathrm{mol})$?
mol CuSO_{4} required $=\frac{1.00 \mathrm{~mol}}{\hbar} \times 0.250 Ł$

$$
=0.250 \mathrm{~mol} \mathrm{CuSO}_{4}
$$

$$
\mathrm{g} \mathrm{CuSO}_{4} \text { required }=0.250 \operatorname{mot} \mathrm{x} \frac{159.6 \mathrm{~g}}{1 \mathrm{mot}}
$$

$$
=39.9 \mathrm{~g} \mathrm{CuSO}_{4}
$$

$$
M=\frac{\mathrm{mol}}{\mathrm{~L}}=\frac{0.250 \mathrm{~mol}}{0.250 \mathrm{~L}}=1.00 \mathrm{M}
$$

Molarity (M)

How to prepare 0.250 L of a 1.00 M solution of $\mathrm{CuSO}_{4}(159.6 \mathrm{~g} / \mathrm{mol})$?
one line calculation:
$\mathrm{g} \mathrm{CuSO}_{4}=0.250 \succeq \times \frac{1.00 \mathrm{mot}^{-u S O_{4}}}{t}$

$$
\times \frac{159.6 \mathrm{~g} \mathrm{CuSO}_{4}}{\mathrm{mot}^{-\mathrm{CuSO}_{4}}}=39.9 \mathrm{~g} \mathrm{CuSO}_{4}
$$

©
5

Molarity (M)

Calculate the molarity of a solution made by dissolving 5.00 g glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right.$, $180.0 \mathrm{~g} / \mathrm{mol}$) in 100.0 mL of solution.
$M=\frac{\text { mol glucose }}{\mathrm{L} \text { solution }}=\frac{0.02777 \mathrm{~mol}}{0.100 \mathrm{~L}}$
mol glucose $=5.00$ g-glueose $\times \frac{1}{180.0-9}$

$$
=0.02777 \mathrm{~mol} \text { glucose }
$$

L solution $=100.0 \mathrm{mt} \times \frac{1 \mathrm{~L}}{1000 \mathrm{mt}}=0.100 \mathrm{~L}$

Molarity (M)

How to prepare 0.250 L of a 1.00 M solution of $\mathrm{CuSO}_{4}(159.6 \mathrm{~g} / \mathrm{mol})$?

6
Dr. A. Gharaibeh

Molarity (M)

Calculate the molarity of a solution made by dissolving 5.00 g glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right.$, $180.0 \mathrm{~g} / \mathrm{mol}$) in 100.0 mL of solution.
one line calculation:

$$
M=\frac{\text { mol glucose }}{L \text { solution }}=5.00 \text { g-glueose } \frac{1 \mathrm{~mol}}{180.0-\mathrm{g}}
$$

$$
\times \frac{1}{100.0 \mathrm{mt}} \times \frac{1000 \mathrm{mt}}{\mathrm{~L}}=0.278 \mathrm{M}
$$

Concentration of Electrolyte

What is the concentration of each ion present in a 0.025 M solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$? $\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow 2 \mathrm{Na}^{+}+\mathrm{CO}_{3}{ }^{2-}$

```
\(\underset{\mathrm{L}}{\mathrm{mol} \mathrm{Na}}=\frac{0.025 \mathrm{~mol}^{+} \mathrm{Na}_{2} \mathrm{CO}_{3}}{\mathrm{~L}} \times \frac{2 \mathrm{~mol} \mathrm{Na}}{}{ }^{+} \mathrm{mol}^{+} \mathrm{Na}_{2} \mathrm{CO}_{3}\)
    \(=\frac{0.050 \mathrm{~mol} \mathrm{Na}}{} \mathrm{L}^{+}=0.050 \mathrm{M} \mathrm{Na}^{+}\)
\(\mathrm{mol} \mathrm{CO}_{3}{ }^{2-}=\frac{0.025 \mathrm{molNa}_{2} \mathrm{NO}_{3}}{\mathrm{~L}} \times \frac{1 \mathrm{~mol} \mathrm{CO}_{3}{ }^{2-}}{1 \mathrm{molNa}_{2} \mathrm{CO}_{3}}\)
            \(=\frac{0.025 \mathrm{~mol} \mathrm{CO}_{3}{ }^{2-}}{\mathrm{L}}=0.025 \mathrm{M} \mathrm{CO}_{3}{ }^{2-}\)
```

How many grams of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ are there in 15 mL of $0.50 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$?
one line calculation:

$$
\begin{aligned}
\mathrm{g} \mathrm{Na}_{2} \mathrm{SO}_{4} & =15 \mathrm{mt} \times \frac{0.50 \mathrm{mmot} \mathrm{Na}_{2} \mathrm{SO}_{4}}{m \mathrm{mt}} \\
& \times \frac{142.0 \mathrm{mg} \mathrm{Na} a_{2} \mathrm{SO}_{4}}{\mathrm{mmolNa}}{ }^{2} \times \frac{1 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4}}{1000 \mathrm{mgNa}_{2} \mathrm{SO}_{4}} \\
& =1.1 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4}
\end{aligned}
$$

How many grams of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ are there in 15 mL of $0.50 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$?

$$
\begin{aligned}
\mathrm{mmol} \mathrm{Na}_{2} \mathrm{SO}_{4} & =15 \mathrm{mt} \times \frac{0.50 \mathrm{mmol} \mathrm{Na}}{2} \mathrm{SO}_{4} \\
& =7.5 \mathrm{mmol} \mathrm{Na}_{2} \mathrm{SO}_{4}
\end{aligned}
$$

$$
\mathrm{mg} \mathrm{Na}_{2} \mathrm{SO}_{4}=7.5 \mathrm{mmo}+\mathrm{Na}_{2} \mathrm{SO}_{4} \times \frac{142.0 \mathrm{mg} \mathrm{Na}_{2} \mathrm{SO}_{4}}{\mathrm{mmol} \mathrm{Na}_{2} \mathrm{SO}_{4}}
$$

$$
=1065 \mathrm{mg} \mathrm{Na}_{2} \mathrm{SO}_{4}
$$

$$
=1065 \mathrm{mgNa}_{2} \mathrm{SO}_{4} \times \frac{1 \mathrm{~g}}{1000 \mathrm{mg}}
$$

$$
=1.1 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4}
$$

How many milliliters of $0.50 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ solution are needed to provide 0.038 mol of this salt?

$$
\begin{aligned}
& L \text { soln }=0.038 \text { mot } x \frac{L}{0.50 m o t}=0.076 \mathrm{~L} \\
& \mathrm{~mL} \text { soln }=0.076 Ł x \frac{1000 \mathrm{~mL}}{\measuredangle}=76 \mathrm{~mL} \text { solution }
\end{aligned}
$$

one line calculation:

$$
\begin{aligned}
\mathrm{mL} \text { soln } & =0.038 \text { mot } \times \frac{t}{0.50 \text { mot }} \times \begin{array}{c}
1000 \mathrm{~mL} \\
t
\end{array} \\
& =76 \mathrm{~mL}
\end{aligned}
$$

What is the concentration (M) of Na^{+}in a solution made by dissolving 23.4 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in 125.0 mL of solution?
$M=\frac{\text { mol Na }^{+}}{\mathrm{L} \text { solution }}$
$\mathrm{mol} \mathrm{Na}_{2} \mathrm{CO}_{3}=23.4 \mathrm{~g}-\mathrm{Na}_{2} \mathrm{CO}_{3} \times \frac{\mathrm{mol} \mathrm{Na}}{2} \mathrm{CO}_{3}{ }_{106.0 \mathrm{~g}-\mathrm{Na}_{2} \mathrm{CO}_{3}}$

$$
=0.22075 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}
$$

$\mathrm{mol} \mathrm{Na}+=0.22075 \mathrm{~mol}^{+} \mathrm{Na}_{2} \mathrm{CO}_{3} \times \frac{2 \mathrm{~mol} \mathrm{Na}}{}{ }^{+} \mathrm{mol}^{-\mathrm{Na}_{2} \mathrm{CO}_{3}}$ $=0.4415 \mathrm{~mol} \mathrm{Na}{ }^{+}$
$M=\frac{0.4415 \mathrm{~mol} \mathrm{Na}}{}{ }^{+}{ }^{0.1250 \mathrm{~L} \text { solution }}=3.53 \mathrm{M} \mathrm{Na}^{+}$

DILUTION OF SOLUTIONS

making a less concentrated solution from a more concentrated one.

Moles of solute before dilution (i)
$M_{i} V_{i}$

$$
\underset{\text { DILUTION }}{\text { add solvent }}
$$

$=\quad$ Moles of solute $=\quad$ after dilution (f)
$=\quad M_{f} V_{f}$

What is the concentration (M) of Na^{+}in a solution made by dissolving 23.4 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in 125.0 mL of solution?

$$
\begin{aligned}
& \frac{23.4 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}}{125 \mathrm{~mL} \text { solution }} \stackrel{\square}{\mathrm{mol} \mathrm{Na}}{ }^{+} \\
& \frac{23.4 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}^{-}}{125 \mathrm{~m} \text { t solution }} \times \frac{\mathrm{mol} \mathrm{Na}_{2} \mathrm{CO}_{3}}{106.0 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}} \times \underset{1}{2 \mathrm{~mol} \mathrm{Na}}{ }^{+} \\
& x \frac{1000 \mathrm{mt}}{1 \mathrm{~L}}=\frac{3.53 \mathrm{~mol} \mathrm{Na}}{}{ }^{+} \text {solution }=3.53 \mathrm{M} \mathrm{Na}^{+}
\end{aligned}
$$

14

Dilution of Solutions

How would you prepare 500. mL of $\mathbf{0 . 2 0 0}$ $\mathrm{M} \mathrm{CuSO}_{4}$ from a stock solution of 4.00 M CuSO_{4} ?
$M_{\mathrm{i}}=4.00 \quad V_{\mathrm{i}}=$? $\mathrm{L} \quad M_{\mathrm{f}}=0.200 \quad V_{\mathrm{f}}=500 \mathrm{~mL}$

$$
\begin{aligned}
& M_{\mathrm{i}} \mathrm{~V}_{\mathrm{i}}=M_{\mathrm{f}} V_{\mathrm{f}} \quad \text { Only for 1:1 mol ratio } \\
& V_{\mathrm{i}}=\frac{M_{\mathrm{f}} V_{\mathrm{f}}}{M_{\mathrm{i}}}=\frac{0.200 \times 500 .}{4.00}=25.0 \mathrm{~mL}
\end{aligned}
$$

Dilution of Solutions

How would you prepare 500 . mL of 0.200 $\mathrm{M} \mathrm{CuSO}_{4}$ from a stock solution of 4.00 M CuSO_{4} ?

$$
\text { mmol after dilution }=500 . \mathrm{mt} \times \frac{0.200 \mathrm{mmol}}{\mathrm{mt}}
$$

$$
=100 . \mathrm{mmol}
$$

$$
\mathrm{mL} \text { before dilution }=100 . \text { mmot } x \frac{\mathrm{~mL}}{4.00 \mathrm{mmot}}
$$

$$
=25.0 \mathrm{~mL}
$$

©
17

Calculate the concentration of K^{+}in a solution made by diluting 2.50 mL of a 5.0 $M \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution to $\mathbf{2 5 0 . 0} \mathrm{mL}$.

$$
\begin{gathered}
M_{\mathrm{i}}=5.00 \quad V_{\mathrm{i}}=2.50 \mathrm{~mL} \quad M_{\mathrm{f}}=? \quad V_{\mathrm{f}}=250.0 \mathrm{~mL} \\
M_{\mathrm{i}} V_{\mathrm{i}}=M_{\mathrm{f}} V_{\mathrm{f}} \quad \text { Only for 1:1 mol ratio } \\
M_{\mathrm{f}}=\frac{M_{\mathrm{i}} V_{\mathrm{i}}}{V_{\mathrm{f}}}=\frac{(5.0)(2.50)}{(250.0)}=0.050 \mathrm{M} \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}
\end{gathered}
$$

$$
\frac{0.050 \mathrm{~mol}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}}{\mathrm{~L}} \times \frac{2 \mathrm{~mol} \mathrm{~K}^{+}}{\mathrm{mol} \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}}=0.10 \mathrm{M} \mathrm{~K}^{+}
$$

Dilution of Solutions

Solutions Stoichiometry

How many grams of NaOH are needed to neutralize 20.0 mL of $0.150 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution? $2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$ $\begin{aligned} \mathrm{mmol} \mathrm{H}_{2} \mathrm{SO}_{4} & =20.0 \mathrm{mt} \times \frac{0.150 \mathrm{mmol} \mathrm{H}_{2} \mathrm{SO}_{4}}{\mathrm{mt}} \\ & =3.00 \mathrm{mmol} \mathrm{H}_{2} \mathrm{SO}_{4}\end{aligned}$
$\mathrm{mmol} \mathrm{NaOH}=3.00 \mathrm{mmoH}_{2} \mathrm{H}_{2} \mathrm{SO}_{4} \times \frac{2 \mathrm{mmol} \mathrm{NaOH}}{1 \mathrm{mmol}_{2} \mathrm{SO}_{4}}$
$=6.00 \mathrm{mmol} \mathrm{NaOH}$
$\mathrm{g} \mathrm{NaOH}=6.00 \mathrm{mmot} \mathrm{NaOH} \times \frac{40 \mathrm{mg} \mathrm{NaOH}}{\mathrm{mmotNaOH}} \times \frac{10^{-3} \mathrm{~g}}{m \mathrm{~m}}$ $=0.240 \mathrm{~g} \mathrm{NaOH}$

Solutions Stoichiometry

How many grams of NaOH are needed to neutralize 20.0 mL of $0.150 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution?
$2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
one line calculation:
$\mathrm{g} \mathrm{NaOH}=20.0 \mathrm{mt} \times \frac{0.150 \mathrm{mmot} \mathrm{H}_{2} \mathrm{SO}_{4}}{\mathrm{mt}} \times$
$\frac{2 \mathrm{mmoHaOH}}{1 \mathrm{mmol} \mathrm{H}_{2} \mathrm{SO}_{4}} \times \frac{40 \mathrm{mg} \mathrm{NaOH}}{\mathrm{mmotNaOH}} \times \frac{10^{-3} \mathrm{~g}}{\mathrm{mg}}$

$$
=0.240 \mathrm{~g} \mathrm{NaOH}
$$

When the reaction is complete?

Equivalence Point:

when stoichiometric amounts of the two solutions are reacted.

How to know it?
Use an indicator:
a substance that changes color at or near the equivalence point.

TITRATIONS

Titrations

A solution of accurately known concentration (standard solution) is gradually added to another solution of unknown concentration until the reaction between the two solutions is complete.

Θ
22

End Point:

The point at which the indicator changes color

Before the end point

Add base slowly until
indicator changes color

At the end point

TITRATIONS

What is the molarity of an NaOH solution if 48.0 mL neutralizes 35.0 mL of $0.144 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$?
$\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \quad \rightarrow \quad \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{mmol} \mathrm{H}_{2} \mathrm{SO}_{4}=35.0 \mathrm{~m} \not x \frac{0.144 \mathrm{mmol}}{\text { nŁ }}=5.04 \mathrm{mmol}$
$\mathrm{mmol} \mathrm{NaOH}=5.04 \mathrm{mmoH}_{2} \mathrm{H}_{2} \mathrm{SO}_{4} \times \frac{2 \mathrm{mmol} \mathrm{NaOH}}{1 \mathrm{mmoH} \mathrm{H}_{2} \mathrm{SO}_{4}}$
$=10.08 \mathrm{mmol} \mathrm{NaOH}$
$M_{\mathrm{NaOH}}=\frac{10.08 \mathrm{mmol} \mathrm{NaOH}}{48.0 \mathrm{~mL}}=0.210 \mathrm{M}$

25

How many mL of a 0.206 M HI solution are required to titrate 22.5 mL of a $0.374 \mathrm{M} \mathrm{KMnO}_{4}$ solution?
$10 \mathrm{HI}+2 \mathrm{KMnO}_{4}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 5 \mathrm{I}_{2}+2 \mathrm{MnSO}_{4}+$ $\mathrm{K}_{2} \mathrm{SO}_{4}+8 \mathrm{H}_{2} \mathrm{O}$

$$
=8.415 \mathrm{mmol}^{\mathrm{KMnO}} 4
$$

mmol HI $=8.415{\text { mmot } \mathrm{KMnO}_{4}}^{\mathrm{mm}} \frac{10 \mathrm{mmol} \mathrm{HI}}{2 \mathrm{mmoHMnO}}{ }_{4}$
$=42.075 \mathrm{mmol} \mathrm{HI}$

$$
\mathrm{mL}_{\mathrm{HI}}=42.075 \mathrm{mmoth} x \frac{\mathrm{~mL}}{0.206 \mathrm{mmothI}}=204 \mathrm{~mL}
$$

TITRATIONS

What is the molarity of an NaOH solution if 48.0 mL neutralizes 35.0 mL of $0.144 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$?
$\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \quad \rightarrow \quad \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
one line calculation:

$$
\begin{aligned}
& \times \frac{2 \mathrm{mmol} \mathrm{NaOH}}{1 \mathrm{mmolH}_{2} \mathrm{SO}_{4}^{-}} \times \frac{1}{48.0 \mathrm{~mL}} \\
& =0.210 \mathrm{M} \mathrm{NaOH}
\end{aligned}
$$

Θ
26

How many mL of a 0.206 M HI solution are required to titrate 22.5 mL of a $0.374 \mathrm{M} \mathrm{KMnO}_{4}$ solution?
$10 \mathrm{HI}+2 \mathrm{KMnO}_{4}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 5 \mathrm{I}_{2}+2 \mathrm{MnSO}_{4}+$ $\mathrm{K}_{2} \mathrm{SO}_{4}+8 \mathrm{H}_{2} \mathrm{O}$
one line calculation:

$$
\begin{aligned}
\mathrm{mL}_{\mathrm{HI}} & =22.5 \mathrm{~m} \nvdash \times \frac{0.374 \mathrm{mmoH} \mathrm{KAnO}_{4}}{m \not} \\
& \times \frac{10 \mathrm{mmotHt}}{2 \mathrm{mmoHKAnO}_{4}} \times \frac{\mathrm{mL}}{0.206 \mathrm{mmoHHI}} \\
& =204 \mathrm{~mL}
\end{aligned}
$$

