

Dr. Ahmad A. Gharaibeh

At 46 °C and 669 mm Hg pressure, a gas occupies a volume of 0.600 L. How many liters it will occupy at 0.0 °C and 0.205 atm?

Gas Densities & Molar MassPV = nRT $n = \frac{m}{\mathcal{M}}$ $n = \frac{m}{\mathcal{M}}$ $PV = \frac{mRT}{\mathcal{M}}$ $m = mass of the gas in g
<math>\mathcal{M} = molar mass of the gas in g/L$ $\mathcal{M} = \frac{mRT}{VP} = \frac{dRT}{P}$ $d = \frac{mR}{RT}$ $d = \frac{\mathcal{M}P}{RT}$

Gas Densities & Molar Mass

A 2.10-L vessel contains 4.65 g of a gas at 1.00 atm and 27.0 °C. What is the molar mass of the gas?

$$\mathcal{M} = \frac{dRT}{P}$$

$$\mathcal{M} = \frac{4.65 \text{ g x } 0.0821 \text{ k.atm}}{2.10 \text{ k x } 300 \text{ k}}$$

$$\mathcal{M} = \frac{2.10 \text{ k x } 1 \text{ atm}}{2.10 \text{ k x } 1 \text{ atm}}$$

$$\mathcal{M} = 54.6 \text{ g/mol}$$

0

Gas Mixtures & Partial Pressures

Dalton's Law of Partial Pressures:

The total pressure of a mixture of gases in a container is equal to the sum of the partial pressures of the individual gases in the mixture. (constant V & T)

27

$$2\text{KCIO}_{3}(s) \rightarrow 2\text{KCI}(s) + 3\text{O}_{2}(g)$$
A 0.250 L of O₂ were collected over water at 26
°C and a total pressure of 765 torr. How many
moles of O₂ will be produced?
P (H₂O) at 26 °C = 25 torr.
P_t = P_{O2} + P_{H2O}
P_{O2} = P_t - P_{H2O} = 765 - 25 = 740 torr

$$n_{O_{2}} = \frac{P_{O_{2}}V_{O_{2}}}{RT} = \frac{740 \text{ torr } x \frac{1 \text{ atm}}{760 \text{ torr}} x 0.25 \text{ J}}{0.0821 \frac{1 \text{ . atm}}{\text{mol . K}}} x 299 \text{ K}$$
= 9.9 x 10⁻³ mol

Graham's Law of Diffusion & Effusion

Diffusion

The mixing of different gases by random molecular motion with frequent collisions.

Graham's Law of Diffusion & Effusion

Effusion

Escape of a gas under pressure from one compartment of a container to another through a tiny hole.

Graham's Law

Under the same conditions of *T* & *P*, rates of diffusion of gases are inversely proportional to the square roots of their molar masses.

It takes 192 s for 1.4 L of an unknown gas to effuse through a porous wall and 84 s for the same volume of N_2 to effuse at the same *T* and *P*. What is the molar mass of the unknown gas?

If methane (CH₄) effuses 3.3 times faster than Ni(CO)_x. What is the value of x

42

$$\frac{r_{CH_4}}{r_{Ni(CO)_x}}$$
 = 3.3 = $\sqrt{\frac{M_{Ni(CO)_x}}{16}}$

 $M_{Ni(CO)_x}$ = 16 x (3.3)² = 174.2 g/mol)

 $M_{Ni(CO)_x}$ = 58.7 + (28x) = 174.2

x = 4.1 ≈ 4

Dr. Ahmad A. Gharaibeh