GASES

5.2 Pressure of a Gas

5.3 The Gas Laws
5.4 The Ideal-Gas Equation
5.5 Further Applications of the Ideal-Gas Equation
5.6 Gas Mixtures and Partial Pressures
5.8 Molecular Effusion and Diffusion

Dr. Ahmad A. Gharaibeh

Pressure

Pressure Units (SI):
$P=\frac{\text { Force }}{\text { Area }}=\frac{\mathbf{N}}{\mathbf{m}^{2}}=\mathrm{Pa}$
$\mathrm{Pa}=$ pascal $\quad 1 \mathrm{~Pa}=1 \mathrm{~N} / \mathrm{m}^{2}$
$\mathrm{N}=$ newton $\quad 1 \mathrm{~N}=1 \mathrm{~kg} . \mathrm{m} / \mathrm{s}^{2}$
atmospheric pressure $\simeq 1 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$

$$
=1 \times 10^{5} \mathrm{~Pa}
$$

2

$$
=1 \times 10^{2} \mathrm{kPa}
$$

Dr. Ahmad A. Gharaibeh

If the barometer reading is 688 mmHg , what is this pressure in units of atm, kPa , and torr?
$688 \mathrm{mmHg} x \frac{1 \mathrm{~atm}}{760 \mathrm{mmHg}}=0.905 \mathrm{~atm}$

$1 \mathrm{mmHg}=1$ torr
Standard Atmospheric Pressure:
The pressure exerted by a column of Hg exactly 760 mm high at $0^{\circ} \mathrm{C}$ at sea level.
1 atm $=760 \mathrm{mmHg}$

$$
\begin{aligned}
& =760 \text { torr } \\
& =101.325 \mathrm{kPa} \\
& =14.70 \mathrm{lb} / \mathrm{in}^{2}(\mathrm{psi})
\end{aligned}
$$

How to measure the pressure of a gas?
Open-end manometer

Boyle's Law

$P-V$ relationship:
$P \alpha \frac{1}{V}$
@ constant \boldsymbol{n} \& T
$P=$ constant $x \frac{1}{V}$
$P V=$ constant
$P_{1} V_{1}=P_{2} V_{2}$

Gas Laws

Four variables define the state of a gas

$$
T=\text { temperature (K) }
$$

$P=$ pressure (atm)
$V=$ volume (L)
$n=$ amount of gas (moles)
Related to each other by the gas laws

Boyle's Law

A gas sample occupies a volume 946 mL at a pressure of 726 mmHg . What is the pressure if the volume is reduced at constant temperature to 154 mL ?

$$
\left.\begin{array}{rl}
P_{1} V_{1}=P_{2} V_{2} \quad \begin{array}{r}
V_{1}=946 \mathrm{~mL} \\
V_{2}=154 \mathrm{~mL}
\end{array} \quad P_{1}=726 \mathrm{mmHg} \\
P_{2}=? \mathrm{mmHg}
\end{array}\right)=\frac{\boldsymbol{P}_{1} V_{1}}{V_{2}}=\frac{\mathbf{7 2 6} \mathbf{~ m m H g} \times 946 \mathrm{~mL}}{154 \mathrm{~mL}} .
$$

Charle's Law

$$
\mathrm{V}=\text { constant } \mathrm{x} \mathbf{T}
$$

Charle's Law

V-T Relationship:

$\boldsymbol{V} \alpha \boldsymbol{T}$ @ constant P \& n
$V=$ constant $\mathbf{x} T$
$\frac{V}{T}=$ constant
$\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}$
©

10

Charle's Law

A gas sample occupies 3.20 L at $125^{\circ} \mathrm{C}$. At what temperature will the gas occupy a volume of 1.54 L if the pressure remains constant?

$$
\begin{aligned}
& \frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} \quad T \text { must be in } \mathrm{K} \\
& T_{1}=125+273=398 \mathrm{~K} \\
& T_{2}=\frac{V_{2} \times T_{1}}{V_{1}}=\frac{1.54 \mathrm{~L} \times 398 \mathrm{~K}}{3.20 \mathrm{~L}}=192 \mathrm{~K}
\end{aligned}
$$

Avogadro'e Law

V-n Relationship:
$\boldsymbol{V} \boldsymbol{\alpha} \boldsymbol{n}$
@ constant $\boldsymbol{T} \& P$
$\frac{V}{n}=$ constant
$\frac{V_{1}}{n_{1}}=\frac{V_{2}}{n_{2}}$
©
13

A mole of any gas occupies a volume of approximately 22.4 L at STP

Avogadro'e Law

At constant $T \& P$:
$\frac{V}{n}=$ constant \quad Molar volume
For any ideal gas:
Molar volume = 22.41 L at STP
STP = Standard $T \& P \quad$ Memorize
Standard $T=0^{\circ} \mathrm{C}=273 \mathrm{~K}$
Standard $P=1$ atm
©
14

Molar Volumes

$3 \mathrm{H}_{2}(\mathrm{~g})$	+	$\mathrm{N}_{2}(\mathrm{~g})$
3 mol	1 mol	$2 \mathrm{NH}_{3}(\mathrm{~g})$
$3 \times 22.4 \mathrm{~L}$	$1 \times 22.4 \mathrm{~L}$	2 mol
3 volumes	1 volume	22.4 L
3 L	1 L	2 L

Remember constant $T \& P$

How many liters of O_{2} are required to completely burn 2.0 L of ammonia at the same $T \& P$?
$4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$2 \mathrm{~L} \mathrm{NH}_{3} \times \frac{5 \mathrm{~L} \mathrm{O}_{2}}{4 \mathrm{LNH}_{3}}=2.5 \mathrm{LO}_{2}$
©
17

Ideal Gas Law

Boyle's Law Charle's Law Avogadro's Law

$$
V \alpha \frac{1}{P} \quad \boldsymbol{V} \alpha \boldsymbol{T} \quad \boldsymbol{V} \alpha \boldsymbol{n}
$$

$\boldsymbol{V}=\mathbf{c o n s t a n t} \mathbf{x} \frac{1}{P} \times \boldsymbol{T} \times \boldsymbol{n}$
$V=\frac{R T n}{P}$
R = Gas constant
$P V=n R T$
Ideal Gas Law
©
18

The Gas Constant R :
$R=\frac{P V}{n T} \quad$ take 1 mole of a gas at STP
$R=\frac{(1 \mathrm{~atm})(22.41 \mathrm{~L})}{(1 \mathrm{~mol})(273 \mathrm{~K})}=0.08206 \frac{\mathrm{~L} . \mathrm{atm}}{\mathrm{mol} . \mathrm{K}}$
$R=8.314 \frac{{\mathrm{~Pa} . \mathrm{m}^{3}}^{\mathrm{mol} . \mathrm{K}}=8.314 \frac{\mathrm{~J}}{\mathrm{~mol} . \mathrm{K}}}{\mathrm{m}}$

What is the volume (in liters) occupied by 49.8 g HCl at STP?

$$
\begin{array}{ll}
P V=n R T & P=1 \mathrm{~atm} \\
V=\frac{n R T}{P} & T=0^{\circ} \mathrm{C}=273 \mathrm{~K}
\end{array}
$$

$$
n_{\mathrm{HCl}}=49.8 \mathrm{~g} \mathrm{HCl} \times \frac{1 \mathrm{~mol} \mathrm{HCl}}{36.45 \mathrm{~g} \mathrm{HCl}}=1.37 \mathrm{~mol}
$$

$$
V=\frac{1.37 \mathrm{moi} \times 0.0821 \frac{\mathrm{~L} . \mathrm{atm}}{\mathrm{movi}} \times 273 \mathrm{~K}}{1 \mathrm{~atm}}=30.7 \mathrm{~L}
$$

©
Dr. Ahmad A. Gharaibeh

Gas Densities \& Molar Mass

$$
\begin{array}{ll}
P V=n R T & \\
n=\frac{m}{\mathcal{M}} & m=\text { mass of the gas in } g \\
P V=\frac{m R T}{\mathcal{M}} & \mathcal{M}=\text { molar mass of the gas }
\end{array}
$$

Gas Densities \& Molar Mass

A 2.10-L vessel contains 4.65 g of a gas at 1.00 atm and $27.0^{\circ} \mathrm{C}$. What is the molar mass of the gas?

$$
\begin{aligned}
\mathcal{M} & =\frac{d R T}{P} \\
\mathcal{M} & =\frac{4.65 \mathrm{~g} \times 0.0821 \frac{\mathrm{Latm}}{\text { molK }} \times 300 \mathrm{~K}}{2.10 亡 \times 1 \mathrm{~atm}} \\
\mathcal{M} & =54.6 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

At $46{ }^{\circ} \mathrm{C}$ and 669 mm Hg pressure, a gas occupies a volume of 0.600 L . How many liters it will occupy at $0.0^{\circ} \mathrm{C}$ and 0.205 atm ?

$$
\begin{aligned}
& \frac{P_{1} V_{1}}{n T_{1}}=\frac{P_{2} V_{2}}{n T_{2}} \quad \longrightarrow \frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \\
& V_{2}=\frac{P_{1} V_{1} T_{2}}{P_{2} T_{1}} \\
& V_{2}=\frac{669 \mathrm{mmHig} \times 0.600 \mathrm{~L} \times 273 \mathrm{~K}}{0.205 \mathrm{~atm} \times \frac{760 \mathrm{mmig}}{1 \mathrm{~atm}} \times 319 \mathrm{~K}}=2.20 \mathrm{~L} \\
& \text { (Q) Dr. AhmadA. Charaiben }
\end{aligned}
$$

$$
\begin{aligned}
& \text { What is the volume of } \mathrm{CO}_{2} \text { produced at } \\
& 37.0^{\circ} \mathrm{C} \text { and } 1.00 \text { atm when } 5.60 \mathrm{~g} \text { of } \\
& \text { glucose are used up in the reaction: } \\
& \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})+6 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \\
& \mathrm{g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \rightarrow \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \rightarrow \mathrm{~mol} \mathrm{CO}_{2} \rightarrow \mathrm{VCO}_{2} \\
& 5.60 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \times \frac{1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}{180 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}} \times \frac{6 \mathrm{~mol} \mathrm{CO}}{2} \\
& 1 \mathrm{molC}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \\
& =0.187 \mathrm{~mol} \mathrm{CO}_{2}
\end{aligned}
$$

Gas Mixtures \& Partial Pressures

Dalton's Law of Partial Pressures:
The total pressure of a mixture of gases in a container is equal to the sum of the partial pressures of the individual gases in the mixture. (constant $V \& T$)

$$
\begin{aligned}
& \mathrm{g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \rightarrow \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \rightarrow \mathrm{~mol} \mathrm{CO} \\
& 2
\end{aligned} \quad V \mathrm{CO}_{2}, ~ \begin{aligned}
V & =\frac{n R T}{P} \\
& =\frac{0.187 \text { moi } \times 0.0821 \frac{\mathrm{~L} \text {.atm }}{\text { moi . } \mathrm{K}} \times 310 . \mathrm{K}}{1 \text { atm }} \\
& =4.76 \mathrm{~L} \\
&
\end{aligned}
$$

Gas Mixtures \& Partial Pressures

Dalton's Law of Partial Pressures

$P_{t}=P_{1}+P_{2}+P_{3}+. . \quad$ constant V, T
$\boldsymbol{P}_{\mathrm{t}}=$ total pressure in container
$P_{\mathrm{i}}=$ partial pressure of gas i .

Partial pressure: the pressure exerted by the gas if it was alone in the container
$P=n \frac{R T}{V}$
At constant V, T:

$$
\begin{array}{ll}
P_{1}=n_{1} \frac{R T}{V} & P_{2}=n_{2} \frac{R T}{V} \\
P_{1} \propto n_{1} & P_{2} \propto n_{2}
\end{array}
$$

In gas phase reactions at constant $V \& T$, we can use partial pressures as we use number of moles.

A sample of natural gas contains 8.24 mol of

 $\mathrm{CH}_{4}, 0.421 \mathrm{~mol}$ of $\mathrm{C}_{2} \mathrm{H}_{6}$, and 0.116 mol of $\mathrm{C}_{3} \mathrm{H}_{8}$. If the total pressure of the gases is 1.37 atm, what is the partial pressure of propane $\mathrm{C}_{3} \mathrm{H}_{8}$?$$
P_{\text {prop }}=X_{\text {prop }} P_{t}
$$

$$
X_{\text {prop }}=\frac{n_{\mathrm{C} 3 \mathrm{H} 8}}{\mathbf{n}_{\mathrm{C} 3 \mathrm{H} 8}+\mathbf{n}_{\mathrm{CH} 4}+\mathbf{n}_{\mathrm{C} 2 \mathrm{H} 6}}
$$

$$
=\frac{0.116}{0.116+8.24+0.421}=0.0132
$$

$$
P_{\text {prop }}=0.0132 \times 1.37 \mathrm{~atm}=0.0181 \mathrm{~atm}
$$

At constant $V \& T$:

$\frac{P_{1}}{P_{t}}=\frac{n_{1} \frac{R T}{V}}{n_{\mathrm{t}} \frac{R T}{V}}$
$\frac{P_{1}}{P_{t}}=\frac{n_{1}}{n_{t}}=X_{1}$
mole fraction of gas 1
$P_{1}=X_{1} P_{t}$
$X_{1}+X_{2}+\ldots=1$

$$
2 \mathrm{KClO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{KCI}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g})
$$

A 0.250 L of O_{2} were collected over water at 26 ${ }^{\circ} \mathrm{C}$ and a total pressure of 765 torr. How many moles of O_{2} will be produced?
$\mathrm{P}\left(\mathrm{H}_{2} \mathrm{O}\right)$ at $26^{\circ} \mathrm{C}=25$ torr.
$\mathbf{P}_{\mathrm{t}}=\mathrm{P}_{\mathrm{O} 2}+\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}$
$P_{\mathrm{O} 2}=\mathrm{P}_{\mathrm{t}}-\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}=765-25=740$ torr
$\begin{aligned} n_{O_{2}}= & \frac{P_{O_{2}} V_{O_{2}}}{R T}=\frac{740 \text { toir } \times \frac{1 \text { atm }}{760 \text { toír }} \times 0.25 \text { 上 }}{0.0821 \frac{\text { 上. atmin }}{\mathrm{mol} . K} \times 299 \text { K }} \\ & =9.9 \times 10^{-3} \mathrm{~mol}\end{aligned}$

Molecular Effusion \& Diffusion

Molecular Speeds

$$
P V=n R T \quad P V=\frac{n M \bar{M} \overline{u^{2}}}{3}
$$

$$
\bar{u}=\sqrt{\frac{3 R T}{M}} \quad \begin{aligned}
& \boldsymbol{u}=\text { Average speed of molecule } \\
& \mathcal{M}=\text { molar mass of the gas }
\end{aligned}
$$

$$
\bar{u} \alpha \sqrt{\frac{1}{M}}
$$

Under the same conditions, lighter gases travel faster

Calculate the average speed (m/s) of NH_{3} molecules at $25^{\circ} \mathrm{C}$.

$$
\begin{aligned}
\bar{u} & =\sqrt{\frac{3 R T}{M}} \quad 1 \mathrm{~J}=1 \mathrm{~kg} \cdot \mathrm{~m}^{2} \cdot \mathrm{~s}^{-2} \\
\bar{u} & =\sqrt{\frac{3\left(8.314 \mathrm{JK}^{-1} \cdot \mathrm{moi}^{-1}\right)(298 \mathrm{~K})}{17.01 \times 10^{-3} \mathrm{~kg} \cdot \mathrm{moi}^{-1}}} \\
& =661 \sqrt{\mathrm{~J} \cdot \mathrm{~kg}^{-1}}=661 \sqrt{\left(\mathrm{~kg} \cdot \mathrm{~m}^{2} \cdot \mathrm{~s}^{-2}\right) \mathrm{kg}^{-4}}
\end{aligned}
$$

$$
661 \text { m/s }
$$

©
37

Graham's Law of Diffusion \& Effusion

Effusion

Escape of a gas under pressure from one compartment of a container to another through a tiny hole.

Graham's Law of Diffusion \& Effusion

Diffusion

The mixing of different gases by random molecular motion with frequent collisions.

Graham's Law

Under the same conditions of $T \& P$, rates of diffusion of gases are inversely proportional to the square roots of their molar masses.
$\boldsymbol{r} \propto \sqrt{\frac{1}{M}}$
$\frac{\boldsymbol{r}_{\mathbf{1}}}{\boldsymbol{r}_{\mathbf{2}}}=\sqrt{\frac{M_{2}}{M_{1}}} \quad \frac{\boldsymbol{t}_{\mathbf{1}}}{\boldsymbol{t}_{\mathbf{2}}}=\sqrt{\frac{M_{1}}{M_{2}}}$
©
40

It takes 192 s for 1.4 L of an unknown gas to effuse through a porous wall and 84 s for the same volume of \mathbf{N}_{2} to effuse at the same T and P. What is the molar mass of the unknown gas?
$\frac{\boldsymbol{t}_{\mathbf{1}}}{\boldsymbol{t}_{\mathbf{2}}}=\sqrt{\frac{M_{1}}{M_{2}}}$
$\frac{192}{84}=\sqrt{\frac{M_{\text {unk }}}{28}}$
$\mathcal{M}_{\text {unk }}=146 \mathrm{~g} / \mathrm{mol}$

If methane $\left(\mathrm{CH}_{4}\right)$ effuses 3.3 times faster than $\mathrm{Ni}(\mathrm{CO})_{x}$. What is the value of x

$$
\begin{aligned}
& \frac{r_{C H_{4}}}{r_{N i(C O)_{x}}}=\mathbf{3 . 3}=\sqrt{\frac{M_{N i(C O)_{x}}}{16}} \\
& \left.M_{N i(C O)_{x}}=16 \times(3.3)^{2}=174.2 \mathrm{~g} / \mathrm{mol}\right) \\
& M_{N i(C O)_{x}}=58.7+(\mathbf{2 8 x})=174.2 \\
& x=4.1 \approx 4
\end{aligned}
$$

