PROPERTIES OF SOLUTIONS
Chapter 13
13.4 Expressing Solution Concentration
13.5 Colligative Properties
Dr.A. Gharaiben

Molarity (M)

Molarity: number of moles of solute per liter of Solution.
$\mathbf{M}=\frac{\text { moles solute }}{\mathrm{L} \text { solution }} \equiv \frac{\mathrm{mol}}{\mathrm{L}} \equiv \frac{\mathrm{mmol}}{\mathrm{mL}}$
Number of mol = M x V (L)
Number of $\mathbf{m o l}=\mathbf{M x V}(\mathrm{mL})$
Properties: T-dependent.

Concentration Units

Solution:

homogeneous mixture of two or more components

Solute + Solvent \rightarrow Solution
Concentration of solute:
either Amount of solute/amount of solvent
or Amount of solutelamount solution
Amount = moles, mass, or volume

Molality: number of moles of solute per kg of solvent.
$m=\frac{\text { moles solute }}{\text { kg solvent }} \quad M=\frac{\text { moles solute }}{\text { Lsolution }}$
Number of mol $=\mathbf{m x k g}$ solvent
Properties: T-independent.

Molality (m)

$$
\begin{aligned}
& \text { Mole Fraction (} X \text {) } \\
& X=\frac{\text { mol component }}{\text { total mol }} \\
& X_{\mathrm{i}}=\frac{n_{\mathrm{i}}}{n_{\mathrm{t}}} \\
& \text { Component } \mathrm{A}=2 \mathrm{~mol} \\
& X_{\mathrm{A}}=\frac{2}{5}=0.4 \\
& X_{1}+X_{2}+X_{3}+\ldots .=1 \\
& \text { Component } \mathrm{B}=3 \mathrm{~mol} \\
& X_{\mathrm{B}}=\frac{3}{5}=0.6 \\
& \text { T-independent }
\end{aligned}
$$

Mass Percent

percent by mass $=\frac{\text { mass component }}{\text { mass solution }} \times 100 \%$
$36 \% \mathrm{HCl}$ solution by mass:

```
100 g solution \equiv 36 g HCI + 64 g H2O
```

mass $_{1} \%+$ mass $_{2} \%+\ldots=100$
T-independent

A sulfuric acid solution containing 571.6 g of $\mathrm{H}_{2} \mathrm{SO}_{4}$ per liter of solution has a density of $1.329 \mathrm{~g} / \mathrm{mL}$. Calculate (a) the mass percent; (b) the mole fraction; (c) the molality; (d) the molarity of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in this solution.
mass $\%=\frac{\text { mass solute }}{\text { mass solution }} \times 100 \%$
mass solt $=571.6 \mathrm{~g}$
mass soln $=1000 . \mathrm{mL} \times \frac{1.329 \mathrm{~g}}{\mathrm{~mL}}=1329 \mathrm{~g}$
mass $\%=\frac{571.6 g}{1329 g} \times 100 \%=43.01 \%$

$$
\begin{aligned}
& \text { mass } \mathrm{H}_{\mathbf{2}} \mathrm{O}=\text { mass of soln }- \text { mass of solt } \\
& \text { mass } \mathrm{H}_{\mathbf{2}} \mathrm{O}=1329-571.6=757.4 \mathrm{~g} \mathrm{H} \mathbf{2} \\
& n_{H_{2} O}=757.4 \mathrm{gH}_{2} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{H}}{\mathbf{2}} \mathbf{O} \\
& n_{H_{2} \mathrm{O}}=42.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \\
& X_{H_{2} \mathrm{SO}_{4}}=\frac{5.833}{5.833+42.03}=0.1219 \\
& X_{H_{2} \mathrm{O}}=1-X_{H_{2} S O_{4}}=1-0.1219=0.8781
\end{aligned}
$$

9

Colligative Properties

$\mathrm{m}=\frac{\text { moles solute }}{\mathrm{kg} \text { solvent }}$
$\mathrm{m}=\frac{5.833 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}}{0.7574 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O}}=7.701 \mathrm{~m}$
$M=\frac{\text { moles solute }}{L \text { solution }}$
$M=\frac{5.833 \mathrm{~mol}}{1 \mathrm{~L}}=5.833 \mathrm{M}$
Θ
10

Colligative Properties

Vapor Pressure Lowering
Boiling Point Elevation

Freezing Point Depression
Osmotic Pressure

Colligative Properties

Properties that depend on the concentration (number) of solute particles in solution, not on the nature of the solute particles.
As the concentration of solute particles increases:

The vapor pressure
The boiling point
The freezing point
The osmotic pressure
decreases increases decreases increases

Vapor Pressure Lowering

- Adding a nonvolatile solute to a solvent always lowers the vapor pressure of the solvent.

P° solv

$\boldsymbol{P}_{\text {soln }}$

Colligative Properties

Conc.	\# of particles	$\Delta \mathrm{T}_{\mathrm{b}}$
1 m glucose	1	$1.5^{\circ} \mathrm{C}$
1 m urea	1	$1.5^{\circ} \mathrm{C}$
2 m glucose	1	$3^{\circ} \mathrm{C}$
1 m NaCl	2	$3^{\circ} \mathrm{C}$

Raoult's Law

The partial pressure of a solution is directly proportional to the mole fraction of the solvent in that solution.
$P_{1}=X_{1} P_{1}^{\circ}$
$P^{\circ}{ }_{1}=$ vapor pressure of pure solvent
$X_{1}=$ mole fraction of the solvent

Raoult's Law

$P_{1}=X_{1} P_{1}^{o}$
If solution contains only one solute:
$X_{1}=1-X_{2} \quad X_{2}=$ mole fraction of solute
$P_{1}^{\circ}-P_{1}=\Delta P=X_{2} P^{\circ}{ }_{1}$
The lowering in vapor pressure, ΔP, is directly proportional to the solute concentration, X_{2}.

What is the vapor pressure of a solution made by mixing 150.0 g glucose
$\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ with 600.0 g water at $25^{\circ} \mathrm{C}$? (at $25^{\circ} \mathrm{C}$ the vapor pressure of pure water is 23.8 torr.)
$P_{1}=X_{1} P_{1}^{\circ}$

$$
\begin{aligned}
& 150.0 \mathrm{~g} \text { glu } \times \frac{1 \mathrm{~mol}}{180.2 \mathrm{~g} \mathrm{glu}}=0.8324 \mathrm{~mol} \\
& 600.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times \frac{1 \mathrm{~mol}}{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}=33.30 \mathrm{~mol}
\end{aligned}
$$

For two volatile liquids:
$P_{\mathrm{t}}=P_{\mathrm{A}}+P_{\mathrm{B}}$
$P_{t}=X_{A} P_{A}^{\circ}+X_{B} P_{B}^{o}$
X_{A} : mole fraction of liquid A in liquid phase
X_{B} : mole fraction of liquid B in liquid phase

$$
\begin{aligned}
& X_{H_{2} O}=\frac{n_{H_{2} O}}{n_{H_{2} O}+n_{C_{6} H_{12} O_{6}}} \\
& X_{H_{2} O}=\frac{33.30}{33.30+0.8324}=0.9756 \\
& P_{1}=X_{1} P_{1}^{\circ}{ }_{1} \\
& P_{1}=0.9756 \times 23.8=\mathbf{2 3 . 2} \mathbf{~ m m H g}
\end{aligned}
$$

©

Boiling Point Elevation

$K_{\mathrm{b}}=\frac{\Delta T_{\mathrm{b}}}{m}=\frac{{ }^{\circ} \mathrm{C}}{m}$
For water $K_{\mathrm{b}}=\mathbf{0 . 5 2}{ }^{\circ} \mathrm{C} / \mathrm{m}$
Each mole of solute particles raises the boiling point of 1 kilogram of water by $0.52{ }^{\circ} \mathrm{C}$.
K_{b} : characteristic of solvent

Boiling Point Elevation

$\Delta T_{b}=K_{b} \cdot m$
$\Delta T_{\mathrm{b}}=T_{\mathrm{b}}-T_{\mathrm{b}}{ }^{\circ}$
$T_{\mathrm{b}}=$ boiling point of solution
$T_{\mathrm{b}}{ }^{\circ}=$ boiling point of pure solvent
$K_{b}=$ molal boiling point elevation constant
$m=$ molality of the solution

Freezing Point Depression

$\Delta T_{f}=K_{f} . m$
$\Delta T_{f}=T_{f}^{\circ}-T_{f}$
$T_{f}=$ freezing point of solution
$T_{f}^{\circ}=$ freezing point of pure solvent
$K_{f}=$ molal freezing point depression constant
$\boldsymbol{m}=$ molality of the solution

Freezing Point Depression

$K_{\mathrm{f}}=\frac{\Delta \boldsymbol{T}_{\mathrm{f}}}{\boldsymbol{m}}=\frac{{ }^{\circ} \mathrm{C}}{\boldsymbol{m}}$
For water $K_{f}=1.86{ }^{\circ} \mathrm{C} / m$
Each mole of solute particles lowers the freezing point of 1 kilogram of water by $1.86^{\circ} \mathrm{C}$.
$K_{\mathrm{f}}:$ characteristic of solvent

List the following aqueous solutions in order of: (a) increasing freezing point; (b) increasing boiling point:

	concentration of particles	
$\left(\mathrm{NO}_{3}\right)_{2}$	1×3	$=3 \mathrm{~m}$
3 m KCl	3×2	$=6 \mathrm{~m}$
4 m C	$\mathrm{H}_{12} \mathrm{O}_{6}$	4×1

What is the freezing point of a solution containing 478 g of ethylene glycol $\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}\right.$, antifreeze) in 3202 g of water?

Molal Boiling Point Elevation and Freezing Point Depression Constants

Solvent	K_{b}	$K_{\mathrm{f}}\left({ }^{\circ} \mathrm{C} / m\right)$
Water	0.52	1.86
Acetic Acid	3.7	3.90
Benzene	2.53	5.12
Phenol	3.56	7.27
Carbon	4.02	29.8
Tetrachloride		

$$
\Delta T_{f}=K_{f} . m \quad K_{f}=1.86^{\circ} \mathrm{C} / m
$$

$$
m=\frac{\mathrm{mol} \mathrm{solt}}{\mathrm{~kg} \mathrm{solv}}=\frac{478 \mathrm{~g} \mathrm{x} \frac{1 \mathrm{~mol}}{62.01 \mathrm{~g}}}{3.202 \mathrm{~kg}}=2.41 \mathrm{~m}
$$

$m=\frac{\text { mol solt }}{\mathrm{kg} \mathrm{solv}}=\frac{478 \mathrm{~g} \mathrm{x} \frac{1 \mathrm{~mol}}{62.01 \mathrm{~g}}}{3.202 \mathrm{~kg}}=2.41 \mathrm{~m}$
(a) $\mathrm{KCl}<\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}<\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}<\mathrm{H}_{2} \mathrm{O}$
(b) $\mathrm{H}_{2} \mathrm{O}<\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}<\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}<\mathrm{KCl}$

$$
\begin{aligned}
& \Delta T_{f}=K_{f} \cdot m \quad K_{f}=1.86{ }^{\circ} \mathrm{C} / m \\
& \Delta T_{f}=\frac{1.86{ }^{\circ} \mathrm{C}}{m} \times 2.41 \mathrm{~m}=4.48^{\circ} \mathrm{C} \\
& \Delta T_{f}=T_{f}^{\circ}-T_{f} \\
& T_{f}=T_{f}^{\circ}-\Delta T_{f} \\
& T_{f}=0.00^{\circ} \mathrm{C}-4.48^{\circ} \mathrm{C}=-4.48^{\circ} \mathrm{C}
\end{aligned}
$$

What volume of ethyleneglycol $\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}\right)$ must be added to 15.0 L of water to produce an antifreeze solution with a freezing point of $-30.0^{\circ} \mathrm{C}$? What is the boiling point of this solution? Density of $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}=1.11 \mathrm{~g} / \mathrm{mL}$ and for water $1.00 \mathrm{~g} / \mathrm{mL}$.
$\Delta T_{f}=T_{f}^{\circ}-T_{f}=0.00^{\circ} \mathrm{C}-\left(-30.0^{\circ} \mathrm{C}\right)=30.0^{\circ} \mathrm{C}$
$\Delta T_{f}=K_{f} . m$
$30.0=1.86{ }^{\circ} \mathrm{C} / \mathrm{m} \times \mathrm{m}$
$m=16.13 \mathrm{~m}=16.13 \frac{\mathrm{~mol} \mathrm{eg}}{\mathrm{Kg} \mathrm{H}_{2} \mathrm{O}}$
Θ
30

Osmotic Pressure

Osmosis:
Flow of solvent molecules through a semipermeable membrane from a dilute solution to a more concentrated one
semipermeable membrane:
Allows the passage of solvent molecules but not the solute molecules

Osmotic Pressure:

The minimum pressure that stops osmosis.

$\pi=M R T$	$\pi=$ osmotic pressure in atm
	$M=$ molarity of solution
	$R=$ gas constant
	$T=$ temperature in K
	isotonic solutions
$\pi_{1}=\pi_{2}$	soln $_{1}:$ hypertonic concentrated
$\pi_{1}>\pi_{2}$	soln $_{2}:$ hypotonic diluted
	34

Determination of Molar Mass
Any of the colligative properties can be used for molar mass determination of the solute with osmotic pressure being the most accurate.
\Leftrightarrow solution 35

A 20.0 mg sample of a protein is dissolved in 25.0 mL of solution. The osmotic pressure of the solution is 0.56 torr at $25^{\circ} \mathrm{C}$. What is the molar mass of the protein?
$M=\frac{\pi}{R T}=\frac{0.56 \text { torr } \times \frac{1 \mathrm{~atm}}{760 \mathrm{torr}}}{0.0821 \frac{\mathrm{~L} . \mathrm{atm}}{\mathrm{mol.K}} \times 298 \mathrm{~K}}$
$M=3.01 \times 10^{-5} \mathrm{M}$
Θ

When 0.186 g of an organic substance is dissolved in 22.01 g of liquid camphor $\left(\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}\right)$, the freezing point of the solution is found to be $176.7^{\circ} \mathrm{C}$. What is the molar mass of the organic compound?
For camphor: $T^{\circ}{ }_{f}=179.8^{\circ} \mathrm{C}, K_{f}=40.0^{\circ} \mathrm{C} / \mathrm{m}$
$\Delta T_{f}=K_{f} m$
$\Delta T_{f}=T_{f}^{\circ}-T_{f}=179.8-176.7=3.1^{\circ} \mathrm{C}$
$3.1^{\circ} \mathrm{C}=40.0^{\circ} \mathrm{C} / \mathrm{m} \times \mathrm{m}$
$m=0.0775 m$
$3.01 \times 10^{-5} \frac{\mathrm{~mol}}{\mathrm{~L}} \times \frac{25.0 \mathrm{~mL} \times 1 \mathrm{~L}}{1000 \mathrm{~mL}}$

$$
=7.5 \times 10^{-7} \mathrm{~mol}
$$

$\mathscr{M}=\frac{20.0 \mathrm{mg} \times \frac{1 \mathrm{~g}}{1000 \mathrm{mg}}}{7.5 \times 10^{-7} \mathrm{~mol}}=2.67 \times 10^{4} \mathrm{~g} / \mathrm{mol}$
$\frac{0.0775 \mathrm{~mol} \text { solt }}{\mathrm{kg} \text { solv }} \times 0.02201 \mathrm{~kg}$ solv $=1.71 \times 10^{-3} \mathrm{~mol}$
$\mathcal{M}=\frac{\mathrm{g}}{\mathrm{mol}}=\frac{0.186 \mathrm{~g}}{1.71 \times 10^{-3} \mathrm{~mol}}=109 \mathrm{~g} / \mathrm{mol}$

