

A sulfuric acid solution containing 571.6 g of H_2SO_4 per liter of solution has a density of 1.329 g/mL. Calculate (a) the mass percent; (b) the mole fraction; (c) the molality; (d) the molarity of H_2SO_4 in this solution.

mass% =
$$\frac{\text{mass solute}}{\text{mass solution}} \times 100\%$$

mass solt = 571.6 g
mass soln = 1000. mL x $\frac{1.329 \text{ g}}{\text{mL}}$ = 1329 g
mass% = $\frac{571.6 \text{ g}}{1329 \text{ g}} \times 100\%$ = 43.01%

$$\begin{split} & \prod_{H_2SO_4} = \frac{\text{mol } H_2SO_4}{\text{mol } H_2SO_4 + \text{mol } H_2O} \\ & n_{H_2SO_4} = 571.6 \text{ g } H_2SO_4 \text{ x } \frac{1 \text{ mol } H_2SO_4}{98.0 \text{ g } H_2SO_4} \\ & n_{H_2SO_4} = 5.833 \text{ mol } \end{split}$$

Colligative Properties

Properties that depend on the <u>concentration</u> (number) of solute <u>particles</u> in solution, not on the <u>nature</u> of the solute particles.

As the <u>concentration</u> of solute particles increases:

The vapor pressure	decreas	es 🖡
The boiling point	increase	s 🕇
The freezing point	decrease	es 👢
The osmotic pressure	e increase	s 🕇
	13	Dr. A. Gharaibeh

Colligative Properties

Conc.	# of particles	ΔT_{b}	
1 <i>m</i> glucose	1	1.5°C	
1 <i>m</i> urea	1	1.5°C	
2 <i>m</i> glucose	1	3°C	
1 <i>m</i> NaCl	2	3°C	
Θ	14	Dr. A.	Gharaibeh

Vapor Pressure Lowering

• Adding a <u>nonvolatile</u> solute to a solvent <u>always</u> lowers the vapor pressure of the solvent.

Raoult's Law

The partial pressure of a solution is directly proportional to the mole fraction of the solvent in that solution.

$$\boldsymbol{P}_1 = \boldsymbol{X}_1 \boldsymbol{P}_1^\circ$$

16

Raoult's Law

 $P_1 = X_1 P_1^{\circ}$

If solution contains only one solute:

 $X_1 = 1 - X_2$ X_2 = mole fraction of solute

 $\boldsymbol{P}^{\circ}_{1}-\boldsymbol{P}_{1}=\boldsymbol{\Delta}\boldsymbol{P}=\boldsymbol{X}_{2}\boldsymbol{P}^{\circ}_{1}$

The lowering in vapor pressure, ΔP , is directly proportional to the solute concentration, X_2 .

17

For two volatile liquids:

 $P_{\rm t} = P_{\rm A} + P_{\rm B}$

 $P_{t} = X_{A} P_{A}^{\circ} + X_{B} P_{B}^{\circ}$

Dr. A. Gharaibeh

 $X_{\rm A}$: mole fraction of liquid A in liquid phase $X_{\rm B}$: mole fraction of liquid B in liquid phase

18

What is the vapor pressure of a solution made by mixing 150.0 g glucose $(C_6H_{12}O_6)$ with 600.0 g water at 25°C? (at 25°C the vapor pressure of pure water is 23.8 torr.)

 $P_1 = X_1 P_1^{\circ}$

600.0 g H₂O x
$$\frac{1 \text{ mol}}{18.02 \text{ g H}_2\text{O}}$$
 = 33.30 mol

$$X_{H_2O} = \frac{n_{H_2O}}{n_{H_2O} + n_{C_6H_{12}O_6}}$$

$$X_{H_2O} = \frac{33.30}{33.30 + 0.8324} = 0.9756$$

$$P_1 = X_1 P_1^{\circ}$$

$$P_1 = 0.9756 \times 23.8 = 23.2 \text{ mmHg}$$

Dr. A. Gharaibeh

Boiling Point Elevation

$$K_{\rm b} = \frac{\Delta T_{\rm b}}{m} = \frac{{}^{\circ}{\rm C}}{m}$$

For water $K_{\rm b}$ = 0.52 °C/m

Each mole of solute particles <u>raises</u> the boiling point of 1 kilogram of water by 0.52 °C.

23

*K*_b: characteristic of solvent

Freezing Point Depression $\Delta T_f = K_f \cdot m$ $\Delta T_f = T_f^{\circ} - T_f$ $T_f =$ freezing point of solution $T_f^{\circ} =$ freezing point of pure solvent $K_f =$ molal freezing point depression constantm = molality of the solution

Freezing Point Depression

$$K_{\rm f} = \frac{\Delta T_{\rm f}}{m} = \frac{{}^{\circ}{\rm C}}{m}$$

For water $K_{\rm f}$ = 1.86 °C/*m*

Each mole of solute particles <u>lowers</u> the freezing point of 1 kilogram of water by 1.86°C.

K_f: characteristic of solvent

Molal Boiling Point Elevation and Freezing Point Depression Constants

Solvent	$K_{\sf b}$	<i>K</i> _f (°C/ <i>m</i>)
Water	0.52	1.86
Acetic Acid	3.7	3.90
Benzene	2.53	5.12
Phenol	3.56	7.27
Carbon	4.02	29.8
Tetrachloride		
~		
	26	Dr. A. Ghara

List the following aqueous solutions in order of: (a) increasing freezing point; (b) increasing boiling point:

25

Dr. A. Gharaibeh

	concentration of particles	
1 <i>m</i> Ca(NO ₃) ₂	1 x 3 = 3	3 m
3 <i>m</i> KCI	3 x 2 = 6	6 m
4 <i>m</i> C ₆ H ₁₂ O ₆	4 x 1 = 4	l m
H ₂ O	0 = 0) <i>m</i>
(a) KCI <	C ₆ H ₁₂ O ₆ < Ca(NO ₃) ₂ <	H₂O
(b) H ₂ O <	$Ca(NO_3)_2 < C_6H_{12}O_6 <$	KCI
9	27	Dr. A. Gharaibeh

What is the freezing point of a solution containing 478 g of ethylene glycol $(C_2H_6O_2, antifreeze)$ in 3202 g of water?

$$\Delta T_{\rm f} = K_{\rm f} \cdot m$$
 $K_{\rm f} = 1.86 \ ^{\circ}{\rm C}/m$

$$m = \frac{\text{mol solt}}{\text{kg solv}} = \frac{\frac{478 \text{ g x} \frac{1 \text{ mol}}{62.01 \text{ g}}}{3.202 \text{ kg}} = 2.41 \text{ m}$$

28

$$\Delta T_{f} = K_{f} \cdot m \qquad K_{f} = 1.86 \text{ °C}/m$$

$$\Delta T_{f} = \frac{1.86 \text{ °C}}{m} \times 2.41 m = 4.48 \text{ °C}$$

$$\Delta T_{f} = T_{f}^{\circ} - T_{f}$$

$$T_{f} = T_{f}^{\circ} - \Delta T_{f}$$

$$T_{f} = 0.00 \text{ °C} - 4.48 \text{ °C} = -4.48 \text{ °C}$$

What volume of ethyleneglycol ($C_2H_6O_2$) must be added to 15.0 L of water to produce an antifreeze solution with a freezing point of -30.0°C? What is the boiling point of this solution? Density of $C_2H_6O_2 = 1.11$ g/mL and for water 1.00 g/mL. $\Delta T_f = T_f^{\circ} - T_f = 0.00 \ ^{\circ}C - (-30.0 \ ^{\circ}C) = 30.0 \ ^{\circ}C$ $\Delta T_f = K_f \ . m$ $30.0 = 1.86 \ ^{\circ}C/m \ x \ m$ $m = 16.13 \ m = 16.13 \ \frac{mol \ eg}{Kg \ H_2O}$

 $\frac{16.13 \text{ mol eg}}{\text{kg H}_2 \text{O}} \times 15 \text{ kg H}_2 \text{O} = 242 \text{ mol eg}$ $242 \text{ mol eg } \times \frac{62.01 \text{ g eg}}{1 \text{ mol eg}} = 15006 \text{ g eg}$ $15006 \text{ g eg } \times \frac{1 \text{ mL}}{1.11 \text{ g eg}} \times \frac{1 \text{ L}}{1000 \text{ mL}}$ = 13.5 L

31

Osmotic Pressure

Osmosis:

Flow of solvent molecules through a semipermeable membrane from a dilute solution to a more concentrated one

semipermeable membrane:

Allows the passage of solvent molecules but not the solute molecules

Dr. A. Gharaibeh

Osmotic P The minim osmosis.	ressure: ium pressure that	stops
π = MRT	π = osmotic pressure in atm	
	<i>M</i> = molarity of solution	ution
	<i>R</i> = gas constant	
	T = temperature in	κ
$\pi_1 = \pi_2$	isotonic solutions	
π ₁ > π ₂	soln₁: hypertonic	concentrated
	soln ₂ : hypotonic	diluted
	34	Dr. A. Gharaibeh

Determination of Molar Mass

Any of the colligative properties can be used for molar mass determination of the solute with osmotic pressure being the most accurate.

A 20.0 mg sample of a protein is dissolved in 25.0 mL of solution. The osmotic pressure of the solution is 0.56 torr at 25°C. What is the molar mass of the protein?

When 0.186 g of an organic substance is dissolved in 22.01 g of liquid camphor ($C_{10}H_{16}O$), the freezing point of the solution is found to be 176.7°C. What is the molar mass of the organic compound? For camphor: $T_{f}^{\circ} = 179.8 \ ^{\circ}C$, $K_{f} = 40.0 \ ^{\circ}C/m$

$$\Delta T_{f} = K_{f} m$$

 $\Delta T_{f} = T_{f}^{\circ} - T_{f} = 179.8 - 176.7 = 3.1^{\circ}C$
 $3.1^{\circ}C = 40.0^{\circ}C/m \times m$

m = 0.0775 *m*

 $\frac{0.0775 \text{ mol solt}}{\text{kg solv}} \ge 0.02201 \text{ kg solv} = 1.71 \ge 10^{-3} \text{ mol}$ $\Im = \frac{g}{\text{mol}} = \frac{0.186 \text{ g}}{1.71 \ge 10^{-3} \text{ mol}} = 109 \text{ g/mol}$

39

Dr. A. Gharaibeh