CHEMICAL KINETICS CHAPTER 14

- **14.1 Factors Affecting Reaction Rates**
- 14.2 Reaction Rates
- 14.3 Concentration & Rate (Rate Laws)
- 14.4 Concentration & Time
- 14.5 Temperature & Rate

Dr. Ahmad A. Gharaibeh

Factors Affecting Reaction Rates

 Physical State of Reactants rate increases with increasing number of collisions between reacting molecules.
 Reactant Concentrations

rate mostly increases with increasing temperature.

- Reaction Temperature rate generally increases with temperature.
 Presence of a Catalyst
- 4. Presence of a Catalyst catalysts usually increase reaction rates.

2

Dr. Ahmad A. Gharaibeh

Chemical Kinetics

Deals with speeds (rates) of reactions How fast a reaction will go?

Reaction Rate:

 $A \rightarrow B$

Rate: change in concentration (Δ conc.) with change in time (Δ t)

Rate of either:disappearance of reactantsorappearance of products

3

Dr. Ahmad A. Gharaibeh

	Rate Law From Initial Rates						
	$F_2(g) + 2CIO_2(g) \longrightarrow 2FCIO_2(g)$						
	rate = $k [F_2]^x [CIO_2]^y$						
	F	Rate Data fo	r the Reaction	Between F ₂ and CIO ₂			
		[F ₂] (<i>M</i>)	[CIO ₂] (<i>M</i>)	Initial Rate (<i>M</i> /s)			
	1	0.10	0.010	1.2 x 10 ⁻³			
	2	0.10	0.040	4.8 x 10 ⁻³			
	3	0.20	0.010	2.4 x 10 ⁻³			
O			14	Dr. Ahmad A. Gharaibeh			

	rate = $k [F_2]^x [CIO_2]^y$						
		[F ₂] (<i>M</i>)	[CIO ₂] (<i>M</i>)	Initial Rate (<i>M</i> /s)			
	1	0.10	0.010	1.2 x 10 ⁻³			
	2	0.10	0.040	4.8 x 10 ⁻³			
	3	0.20	0.010	2.4 x 10 ⁻³			
	$\frac{rate_2}{rate_1} = \frac{4.8 \times 10^{-3}}{1.2 \times 10^{-3}} = \frac{\cancel{F_2}_2^x [ClO_2]_2^y}{\cancel{F_2}_1^x [ClO_2]_1^y}$						
	$4 = \frac{(0.10)^{\times} (0.\ 040)^{y}}{(0.10)^{\times} (0.\ 010)^{y}} = \frac{(0.\ 040)^{y}}{(0.\ 010)^{y}} = (4)^{y}$						
	y = 1 1 st order in CIO ₂						
٧			15	Dr. Ahmad A. Gh	araibeh		

$F_{2}\left(g\right) + 2CIO_{2}\left(g\right) \rightarrow 2FCIO_{2}\left(g\right)$					
	[F ₂] (<i>M</i>)	[CIO ₂] (<i>M</i>)	Initial Rate (<i>M</i> /s)		
1	0.10	0.010	1.2 x 10 ⁻³		
2	0.10	0.040	4.8 x 10 ⁻³		
3	0.20	0.010	2.4 x 10 ⁻³		
rate ₃ =	2.4 x 1	$\frac{0^{-3}}{2} = \frac{k}{2}$	$[F_2]_3^x [ClO_2]_3^y$		
rate ₁	1.2 x 1	0 ⁻³ k	$[F_2]_1^x [ClO_2]_1^y$		
$2 = \frac{(0.20)^{x} (0.010)^{y}}{(0.10)^{x} (0.010)^{y}} = \frac{(0.20)^{x}}{(0.10)^{x}} = (2)^{x}$					
x = 1 1 st order in F ₂					
rate = $k [F_2]^1 [CIO_2]^1$					
O		16	Dr. Ahmad A. Gharaibe		

[A]	Rate =		X	Order in A
1.0	<i>k</i> (1.0) ^{<i>x</i>}	= <i>k</i>	1	
2.0	<i>k</i> (2.0) ^x	= 2 <i>k</i>	1	1 st
2.0	<i>k</i> (2.0) ^x	= 4 <i>k</i>	2	2 nd
2.0	<i>k</i> (2.0) ^x	= 8 <i>k</i>	3	3rd
3.0	<i>k</i> (3.0) ^{<i>x</i>}	= 3 <i>k</i>		
3.0	<i>k</i> (3.0) ^{<i>x</i>}	= 9 <i>k</i>		2 nd
3.0	<i>k</i> (3.0) ^x	= 27 <i>k</i>		3rd
		17		Dr. Ahmad A. Gharaib

$$2NO (g) + Br_{2} (g) \rightarrow 2NOBr (g)$$
[NO] (M) [Br₂] (M) Initial Rate (M/s)
1 0.10 0.10 12
2 0.10 0.20 24
3 0.30 0.10 108
Determine the rate law rate = k [NO]* [Br₂]^y

$$\frac{rate_{2}}{rate_{1}} = \frac{24}{12} = \frac{k (0.10)^{x} (0.20)^{y}}{k (0.10)^{x} (0.10)^{y}} = (2)^{y}$$

$$2 = (2)^{y}$$

$$y = 1 1^{st} \text{ order in } Br_{2}$$

 $2NO(g) + Br_2(g) \rightarrow 2NOBr(g)$ [NO] (M) [Br₂] (M) Initial Rate (M/s) 0.10 0.10 12 1 2 0.10 0.20 24 3 0.30 0.10 108 Determine the rate law rate = $k [NO]^{x} [Br_{2}]^{y}$ $\frac{\text{rate}_3}{\text{rate}_1} = \frac{108}{12} = \frac{\cancel{k} (0.30)^x (0.10)^x}{\cancel{k} (0.10)^x (0.10)^x} = (3)^x$ $9 = (3)^x$ x = 2 2^{nd} order in NO rate = $k [NO]^2 [Br_2]$ 19 Dr. Ahmad A. Gharaibeh

2NO (g) + \mathbf{Br}_2 (g) \rightarrow **2NOBr** (g) [NO] (M) [Br₂] (M) Initial Rate (M/s) 0.10 0.10 12 1 2 0.10 0.20 24 3 0.30 0.10 108 Calculate the rate constant for the reaction rate = $k[NO]^2[Br_2]$ $k = \frac{\text{rate}}{[\text{NO}]^2 [\text{Br}_2]} = \frac{108 \text{ M.s}^{-1}}{(0.30 \text{ M})^2 (0.10 \text{ M})}$ $k = 1.2 \times 10^4 M^{-2}.s^{-1}$ 20 Dr. Ahmad A. Gharaibeh

Change of Concentration with Time The Integrated Rate Law: 1. First-Order Reactions $A \rightarrow \text{product}$ $\text{rate} = k [A]^1$ $k = \frac{\text{rate}}{[A]} = \frac{M.s^{-1}}{M} = s^{-1}$ $\text{rate} = -\frac{\Delta[A]}{\Delta t}$ $-\frac{\Delta[A]}{\Delta t} = k[A]$

Dr. Ahmad A. Gharaibeh

The reaction $2A \rightarrow B$ is first order in A with a rate constant of 2.8 x 10⁻² s⁻¹ at 80°C. How long will it take for A to decrease from 0.88 M to 0.14 M?

$$\ln[A]_{t} = -kt + \ln[A]_{0} \qquad [A]_{0} = 0.88$$
$$[A]_{t} = 0.14$$
$$t = \frac{\ln[A]_{0} - \ln[A]_{t}}{k}$$
$$t = \frac{\ln \frac{[A]_{0}}{[A]_{t}}}{k} = \frac{\ln \frac{0.88 M}{0.14 M}}{2.8 \times 10^{-2} \text{ s}^{-1}} = 66 \text{ s}$$

Reaction Half-Life $t_{1/2}$

t

The time required for the concentration of a reactant to decrease to half of its initial concentration

$$t = \frac{\ln \frac{[A]_{0}}{[A]_{t}}}{k} \quad \text{at } t_{1/2} \colon [A]_{t} = \frac{[A]_{0}}{2}$$

$$t_{1/2} = \frac{\ln 2}{k} \quad t_{1/2} = \frac{0.693}{k} \quad \text{constant}$$
independent of [A]_0
$$28 \quad \text{Dr.Ahmad A. Gharaibeh}$$

2. Second-Order Reactions

$$\frac{d[A]}{[A]^2} = -k dt$$

$$\int_{[A]_1}^{[A]_1} \frac{d[A]}{[A]^2} = -k \int_0^t dt$$

$$\frac{1}{[A]_0} - \frac{1}{[A]_1} = -kt$$

$$\frac{1}{[A]_1} = kt + \frac{1}{[A]_0}$$
Example 1

Order	Rate Law	∫ Rate Law	Slope	Intercept	t _{1/2}
0 th	Rate = <i>k</i>	$[\mathbf{A}]_{t} = -kt + [\mathbf{A}]_{0}$	- k	[A]₀	$\frac{[A]_0}{2k}$
1 st	Rate = <i>k</i> [A]	$Ln[A]_t = -kt + ln[A]_0$	- k	In[A]₀	0.693 k
2 nd	Rate = <i>k</i> [A] ²	$\frac{1}{[A]_t} = kt + \frac{1}{[A]_0}$	k	_ <u>1</u> [A]₀	1 <i>k</i> [A] ₀
			I		
		38		Dr. Ahmad	A. Gharaibeh

The following initial rate data were obtained for the stoichiometric reaction: $3A + B \rightarrow 2P$					
Exp.	[A] ₀ , <i>M</i>	[B] ₀ , <i>M</i>	Initial rate = -d[A]/dt		
1	0.20	0.20	1.2 x 10 ⁻⁸		
2	0.20	0.60	1.2 x 10⁻ ⁸		

For a third experiment, a plot of 1/[A] versus time was found to be linear. What is the order of the reaction with respect to the concentration of A and B?

Temperature and Rate

Reaction rates increase with:

- 1. concentration
- 2. temperature
- 3. catalyst

All explained by the collision model theory

40

Only small fraction of collisions produce reaction. Why?

1. Colliding molecules should have a total kinetic energy equal to or greater than a minimum value (threshold) called the activation energy, E_{a} .

2. The relative orientation of the reactants must allow the formation of any new bonds necessary to produce products (steric effect)

42

Dr. Ahmad A. Gharaibeh

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><image><image><image>

Arrhenius Equation

At two different temperatures:

$$\ln k_1 = -\frac{E_a}{RT_1} + \ln A$$
 $\ln k_2 = -\frac{E_a}{RT_2} + \ln A$

Subtract & rearrange

$$\ln\frac{k_1}{k_2} = \frac{E_a}{R}$$

49

Dr. Ahmad A. Gharaibeh

$$H_2(g) + I_2(g) \rightarrow 2HI(g)$$

The rate law for this reaction is first order in each of the two reactants and has a k =0.0028/*M.s* at 200°C measured for - d[H₂]/dt. E_a for the reaction is 170. kJ/mol. What is the rate of HI formation at 300°C when both H₂ and I₂ are at a concentration of 0.0150 *M*?

At 300°C (573 K):

$$\frac{\Delta[\mathsf{HI}]}{\Delta t} = 2 \frac{-\Delta[\mathsf{H}_2]}{\Delta t} = 2 k_{573} [\mathsf{H}_2][\mathsf{I}_2]$$

Dr. Ahmad A. Gharaibeh

$$\ln \frac{k_1}{k_2} = \frac{E_a}{R} \left(\frac{T_1 - T_2}{T_1 T_2} \right)$$

$$\ln \frac{k_{473}}{k_{573}} = \frac{E_a}{R} \left(\frac{473 - 573}{473 \times 573} \right)$$

$$\ln \frac{0.0028 \ M^{-1} . s^{-1}}{k_{573}} = \frac{1.70 \times 10^5 \ \text{J/mol}}{8.314 \ \text{J.mol}^{-1} . \text{K}^{-1}} (-3.69 \times 10^{-4} \ \text{K}^{-1})$$

$$k_{573} = 5.29 \ M^{-1} . s^{-1}$$

$$\frac{\Delta [\text{HI}]}{\Delta t} = 2k_{573} [\text{H}_2] [\text{I}_2] = (2) \left(5.29 \right) (0.0150)^2$$

$$= 0.00238 \ M.s^{-1}$$

Consider a series of reactions having these energy profiles. Rank the reactions from slowest to fastest assuming that they have nearly the same value for the frequency factor *A*.

50

