CHEMICAL KINETICS CHAPTER 14

14.1 Factors Affecting Reaction Rates

14.2 Reaction Rates

14.3 Concentration \& Rate (Rate Laws)

14.4 Concentration \& Time

14.5 Temperature \& Rate

Chemical Kinetics

Deals with speeds (rates) of reactions How fast a reaction will go?

Reaction Rate:

A \rightarrow B
Rate: change in concentration (Δ conc.) with change in time ($\Delta \mathrm{t}$)

Rate of either: disappearance of reactants or appearance of products

Factors Affecting Reaction Rates

1. Physical State of Reactants
rate increases with increasing number of collisions between reacting molecules.
2. Reactant Concentrations
rate mostly increases with increasing temperature.
3. Reaction Temperature
rate generally increases with temperature.
4. Presence of a Catalyst
catalysts usually increase reaction rates.

Reaction Rate:

A \rightarrow B

$$
\Delta[\mathbf{A}]=[\mathbf{A}]_{f}-[\mathbf{A}]_{i}
$$

$$
\Delta[\mathrm{A}]=-
$$

decreasing

$$
\Delta[B]=[B]_{f}-[B]_{i} \quad \Delta[B]=+\quad \text { increasing }
$$

$$
\text { rate }=\frac{-\Delta[\mathrm{A}]}{\Delta t}
$$

$$
\text { rate }=\frac{\Delta[\mathrm{B}]}{\Delta \mathrm{t}}
$$

$$
\text { Units }=\frac{M}{s}
$$

$\mathrm{Br}_{2}(a q)+\mathrm{HCOOH}(a q) \longrightarrow 2 \mathrm{Br}^{-}(a q)+2 \mathrm{H}^{+}(a q)+\mathrm{CO}_{2}(g)$ brown colorless

5

instantaneous rate: rate at specific instance in time instantaneous rate at 200s $=2.09 \times 10^{-5} \mathrm{M} / \mathrm{s}$
initial rate: rate at $\boldsymbol{t}=\mathbf{0}$

Reaction Rates \& Stoichiometry
$2 A \rightarrow B$
Rate $=\frac{\Delta[\mathrm{B}]}{\Delta t}$
rate of disappearance of $\mathrm{A}=$
$2 x$ rate of appearance of B
rate $=-\frac{\Delta[\mathrm{A}]}{\Delta t}=2 \times \frac{\Delta[\mathrm{B}]}{\Delta t}$
rate $=-\frac{1}{2} \frac{\Delta[\mathrm{~A}]}{\Delta t}=\frac{\Delta[\mathrm{B}]}{\Delta t}$

$$
\begin{aligned}
& \text { Reaction Rates \& Stoichiometry } \\
& \begin{array}{c}
\mathrm{aA}+\mathrm{bB} \rightarrow \mathrm{cC}+\mathrm{dD} \\
\text { rate }=-\frac{1}{\mathrm{a}} \frac{\Delta[\mathrm{~A}]}{\Delta t}=-\frac{1}{\mathrm{~b}} \frac{\Delta[\mathrm{~B}]}{\Delta t} \\
=\frac{1}{\mathrm{c}} \frac{\Delta[\mathrm{C}]}{\Delta t}=\frac{1}{\mathrm{~d}} \frac{\Delta[\mathrm{D}]}{\Delta t} \\
2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
\end{array} \\
& \text { rate }=-\frac{1}{2} \frac{\Delta\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}{\Delta t}=\frac{1}{4} \frac{\Delta\left[\mathrm{NO}_{2}\right]}{\Delta t}=\frac{\Delta\left[\mathrm{O}_{2}\right]}{\Delta t}
\end{aligned}
$$

Rate Law

$a A+b B \rightarrow c C+d D$
rate $=k[\mathrm{~A}]^{x}[\mathrm{~B}]^{y}$
RATE LAW
$k=$ rate constant
depends on:
Specific reaction
Temperature
Presence of catalyst
larger k : faster reaction
Units: \quad depend on $x \& y$

Rate Law

How the rate of the reaction changes with concentration of REACTANTS
$a A+b B \rightarrow c C+d D$
rate $\propto[A]^{x} \quad$ rate $\propto[B]^{y}$
rate $=k[A]^{\otimes}[B] D \quad$ RATE LAW
Θ
10

```
Rate Law
aA + bB -> cC + dD
rate =k[A]\[B]D 饻 RATE LAW
x and y:
```

Not related to stoichiometric coefficients in the balanced equation

Mostly positive small integers $(0,1,2)$

Rate Law

$a A+b B \rightarrow c C+d D$
rate $=k[A]^{\triangle}[B] D$
RATE LAW
\underline{x} and y : reaction order:
Reaction is $x^{\text {th }}$ order in A If $x=2 \quad 2^{\text {nd }}$ order in A

Reaction is $y^{\text {th }}$ order in B If $y=1 \quad 1^{\text {st }}$ order in B
Reaction is $(x+y)^{\text {th }}$ order overall Reaction is $3^{\text {rd }}$ order overall

Rate Law From Initial Rates

$$
\begin{gathered}
\mathrm{F}_{2}(g)+2 \mathrm{ClO}_{2}(g) \longrightarrow 2 \mathrm{FClO}_{2}(g) \\
\text { rate }=k\left[\mathrm{~F}_{2}\right]^{x}\left[\mathrm{ClO}_{2}\right]^{y}
\end{gathered}
$$

Rate Data for the Reaction Between F_{2} and ClO_{2}
$\left[\mathrm{F}_{2}\right](\mathrm{M})\left[\mathrm{ClO}_{2}\right](M)$ Initial Rate (M/s)

1	0.10	0.010	1.2×10^{-3}
2	0.10	0.040	4.8×10^{-3}
3	0.20	0.010	2.4×10^{-3}

$$
\text { rate }=k\left[F_{2}\right]^{x}\left[\mathrm{ClO}_{2}\right]^{y}
$$

$\left[\mathrm{F}_{2}\right](\mathrm{M})\left[\mathrm{ClO}_{2}\right](M)$ Initial Rate (M/s)

$$
\begin{aligned}
& 10.10 \quad 0.010 \quad 1.2 \times 10^{-3} \\
& \begin{array}{llll}
2 & 0.10 & 0.040 & 4.8 \times 10^{-3}
\end{array} \\
& \begin{array}{llll}
3 & 0.20 & 0.010 & 2.4 \times 10^{-3}
\end{array} \\
& \frac{\text { rate }_{2}}{\text { rate }_{1}}=\frac{\mathbf{4 . 8 \times 1 0 ^ { - 3 }}}{\mathbf{1 . 2 \times 1 0 ^ { - 3 }}}=\frac{\boldsymbol{k}\left[\mathrm{F}_{2}\right]_{2}^{x}\left[\mathrm{ClO}_{2}\right]_{2}^{y}}{\boldsymbol{l}-\left[\mathrm{F}_{2}\right]_{1}^{x}\left[\mathrm{ClO}_{2}\right]_{1}^{y}} \\
& 4=\frac{(0.10)^{x}(0.040)^{y}}{(0.10)^{x}(0.010)^{y}}=\frac{(0.040)^{y}}{(0.010)^{y}}=(4)^{y} \\
& y=1 \quad 1^{\text {st }} \text { order in } \mathrm{ClO}_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{F}_{2}(g)+2 \mathrm{ClO}_{2}(g) \rightarrow 2 \mathrm{FClO}_{2}(g) \\
& \begin{array}{cccc}
& {\left[\mathrm{F}_{2}\right](M)} & {\left[\mathrm{ClO}_{2}\right](M)} & \text { Initial Rate }(M / \mathrm{s}) \\
1 & 0.10 & 0.010 & 1.2 \times 10^{-3} \\
2 & 0.10 & 0.040 & 4.8 \times 10^{-3} \\
3 & 0.20 & 0.010 & 2.4 \times 10^{-3}
\end{array} \\
& \text { rate }_{\mathbf{3}}=\frac{\mathbf{2 . 4 \times 1 0 ^ { - 3 }}}{\text { rate }_{1}} \mathbf{1 . 2 \times \mathbf { 1 0 } ^ { - \mathbf { 3 } }}=\frac{\boldsymbol{k}\left[\mathrm{F}_{2}\right]_{3}^{x}\left[\mathrm{ClO}_{2}\right]_{3}^{y}}{\boldsymbol{l} \cdot\left[\mathrm{~F}_{2}\right]_{1}^{x}\left[\mathrm{ClO}_{2}\right]_{1}^{y}} \\
& 2=\frac{(0.20)^{x}(0.010)^{y}}{(0.10)^{x}(0.010)^{\prime \prime}}=\frac{(0.20)^{x}}{(0.10)^{x}}=(2)^{x} \\
& x=1 \quad 1^{\text {st }} \text { order in } \mathrm{F}_{2} \\
& \text { rate }=k\left[\mathrm{~F}_{2}\right]^{1}\left[\mathrm{ClO}_{2}{ }^{(1)}\right.
\end{aligned}
$$

[A]	Rate $=$	x	Order in A
1.0	$k(1.0)^{x}=k$	1	
2.0	$k(2.0)^{x}=2 k$	1	$1^{\text {st }}$
2.0	$k(2.0)^{x}=4 k$	2	$2^{\text {nd }}$
2.0	$k(2.0)^{x}=8 k$	3	$3^{\text {rd }}$
3.0	$k(3.0)^{x}=3 k$		
3.0	$k(3.0)^{x}=9 k$	$2^{\text {nd }}$	
3.0	$k(3.0)^{x}=27 k$	$3^{\text {rd }}$	

$2 \mathrm{NO}(\mathrm{g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightarrow$						
$[\mathrm{NO}](M)$					$\left[\mathrm{Br}_{2}\right](M)$	Initial Rate $(\mathrm{M} / \mathrm{s})$
1	0.10	0.10	12			
2	0.10	0.20	24			
3	0.30	0.10	108			

Calculate the rate constant for the reaction rate $=k\left[\mathrm{NO}^{2}\left[\mathrm{Br}_{2}\right]\right.$

$k=1.2 \times 10^{4} \mathrm{M}^{-2} . \mathrm{s}^{-1}$

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NOBr}(\mathrm{~g})
$$

What is the rate of the reaction when $[\mathrm{NO}]=0.15 \mathrm{M}$ and $\left[\mathrm{Br}_{2}\right]=0.25 \mathrm{M}$
rate $=k[\mathrm{NO}]^{2}\left[\mathrm{Br}_{2}\right]$
rate $=\left(1.2 \times 10^{4} M^{-2} . s^{-1}\right)(0.15 M)^{2}(0.25 M)$
rate $=67.5$ M.s $^{-1}$

21

Change of Concentration with Time

Rate law:
Tells how the reaction rate depends on reactant concentration

How the concentrations of reactants and products change with time?

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NOBr}(\mathrm{~g})
$$

How is the appearance of NOBr related to the rate of disappearance Br_{2} and NO

$$
\frac{1}{2} \frac{\Delta[\mathrm{NOBr}]}{\Delta t}=-\frac{1}{2} \frac{\Delta[\mathrm{NO}]}{\Delta t}=-\frac{\Delta\left[\mathrm{Br}_{2}\right]}{\Delta t}
$$

therefore

$$
\frac{\Delta[\mathrm{NOBr}]}{\Delta t}=-\frac{\Delta[\mathrm{NO}]}{\Delta t}=-\frac{2 \Delta\left[\mathrm{Br}_{2}\right]}{\Delta t}
$$

Change of Concentration with Time

 The Integrated Rate Law:1. First-Order Reactions

$$
\begin{aligned}
& \mathrm{A} \rightarrow \text { product } \\
& \text { rate }=k[\mathrm{~A}]^{1} \\
& \text { rate }=-\frac{\Delta[\mathrm{A}]}{\Delta t} \\
& -\frac{\Delta[\mathrm{A}]}{\Delta t}=k[\mathrm{~A}]
\end{aligned}
$$

1. First-Order Reactions

$\frac{d[A]}{[A]}=-k d t$
$\int_{[\mathrm{A}]_{0}}^{[\mathrm{A}]_{t}} \frac{d[\mathrm{~A}]}{[\mathrm{A}]}=-\boldsymbol{k} \int_{0}^{t} d \boldsymbol{t}$
$\ln \frac{[A]_{t}}{[A]_{0}}=-k t$
$\ln [\mathrm{A}]_{t}=-k t+\ln [\mathrm{A}]_{0}$

25

The reaction 2A $\rightarrow B$ is first order in A with a rate constant of $2.8 \times 10^{-2} \mathrm{~s}^{-1}$ at $80^{\circ} \mathrm{C}$. How long will it take for A to decrease from 0.88 M to 0.14 M ?

$$
\begin{aligned}
& \ln [\mathrm{A}]_{\mathrm{t}}=-k t+\ln [\mathrm{A}]_{0} \quad[\mathrm{~A}]_{0}=0.88 \\
& t=\frac{\ln [\mathrm{A}]_{0}-\ln [\mathrm{A}]_{\mathrm{t}}}{k} \\
& t=\frac{\ln]_{\mathrm{t}}=0.14}{[\mathrm{~A}]_{0}} \\
& k
\end{aligned}
$$

1. First-Order Reactions

$$
\underset{y}{\ln [A]_{t}}=-k t+\ln [A]_{0}
$$

linear

For gas-phase reactions:

$$
\ln P_{\mathrm{t}}=-k t+\ln P_{0}
$$

26

Reaction Half-Life $\boldsymbol{t}_{1 / 2}$

The time required for the concentration of a reactant to decrease to half of its initial concentration
$t=\frac{\ln \frac{[A]_{0}}{[A]_{t}}}{k}$
at $t_{1 / 2}:[\mathrm{A}]_{\mathrm{t}}=\frac{[\mathrm{A}]_{0}}{2}$
$t_{1 / 2}=\frac{\ln 2}{k}$
$t_{1 / 2}=\frac{0.693}{k}$
constant
independent of $[A]_{0}$

Θ
29

2. Second-Order Reactions

$\frac{d[A]}{[A]^{2}}=-k d t$
$\int_{[\mathrm{A}]_{0}}^{[\mathrm{A}]_{t}} \frac{d[\mathrm{~A}]}{[\mathrm{A}]^{2}}=-k \int_{0}^{t} d t$
$\frac{1}{[A]_{0}}-\frac{1}{[A]_{t}}=-k t$
$\frac{1}{[\mathrm{~A}]_{\mathrm{t}}}=k t+\frac{1}{[\mathrm{~A}]_{0}}$

Change of Concentration with Time

The Integrated Rate Law:
2. Second-Order Reactions

A \rightarrow product
rate $=k[A]^{2}$

$$
k=\frac{\text { rate }}{[\mathrm{A}]^{2}}=\frac{M \cdot \mathrm{~s}^{-1}}{M^{2}}
$$

rate $=-\frac{\Delta[\mathrm{A}]}{\Delta t}$

$$
=M^{-1} \cdot \mathrm{~s}^{-1}
$$

$-\frac{\Delta[\mathrm{A}]}{\Delta t}=k[\mathrm{~A}]^{2}$
2. Second-Order Reactions

$$
\frac{1}{[\mathrm{~A}]_{\mathrm{t}}}=k t+\frac{1}{[\mathrm{~A}]_{0}}
$$

For gas-phase reactions:
$\frac{1}{P_{t}}=k t+\frac{1}{P_{0}}$

2. Second-Order Reactions

Reaction Half-Life Time $t_{1 / 2}$
$\frac{1}{[\mathrm{~A}]_{\mathrm{t}}}=k t+\frac{1}{[\mathrm{~A}]_{0}}$
$\frac{1}{[\mathrm{~A}]_{0} / 2}=k t_{1 / 2}+\frac{1}{[\mathrm{~A}]_{0}}$
$t_{1 / 2}=\frac{1}{k[A]_{0}}$
Depends on initial concentration and k
θ
33

Change of Concentration with Time

The Integrated Rate Law:
3. Zero-Order Reactions

A \rightarrow product
rate $=k[A]^{0}=k=\underline{\text { constant }}$
k: M. \mathbf{s}^{-1}
$-\frac{\Delta[\mathrm{A}]}{\Delta t}=k$
$d[A]=-k d t$

[A] vs time for a 2nd order reaction

34

3. Zero-Order Reactions

$$
\begin{aligned}
& \int_{[\mathrm{A}]_{0}}^{[\mathrm{A}]_{t}} d[\mathrm{~A}]=-k \int_{0}^{t} d t \\
& {[\mathrm{~A}]_{\mathrm{t}}=-k t+[\mathrm{A}]_{0}} \\
& \mathrm{y} \quad \mathrm{mx} \quad \mathrm{~b}
\end{aligned}
$$

Reaction Half-Life Time

$\frac{[\mathrm{A}]_{\mathrm{t}}}{2}=-k t_{1 / 2}+[\mathrm{A}]_{0}$
$\boldsymbol{t}_{1 / 2}=\frac{[\mathrm{A}]_{0}}{2 k}$

Order	Rate Law	\int Rate Law	Slope	$\operatorname{Intercept}$	$t_{1 / 2}$
$0^{\text {th }}$	Rate $=k$	$[\mathrm{~A}]_{\mathrm{t}}=-k t+[\mathrm{A}]_{0}$	$-k$	$[\mathrm{~A}]_{0}$	$\frac{[\mathrm{~A}]_{0}}{2 k}$
$1^{\text {st }}$	Rate $=k[\mathrm{~A}]$	$\operatorname{Ln}[\mathrm{A}]_{\mathrm{t}}=-k t+\ln [\mathrm{A}]_{0}$	$-k$	$\ln [\mathrm{~A}]_{0}$	$\frac{0.693}{k}$
$2^{\text {nd }}$	Rate $=k[\mathrm{~A}]^{2}$	$\frac{1}{[\mathrm{~A}]_{\mathrm{t}}}=k t+\frac{1}{[\mathrm{~A}]_{0}}$	k	$\frac{1}{[\mathrm{~A}]_{0}}$	$\frac{1}{k[\mathrm{~A}]_{0}}$

The following initial rate data were obtained for the stoichiometric reaction: 3A + B $\rightarrow 2 P$

Exp.	$[\mathrm{A}]_{0}, M$	$[\mathrm{~B}]_{0}, M$	Initial rate $=-\mathrm{d}[\mathrm{A}] / \mathrm{dt}$
1	0.20	0.20	1.2×10^{-8}
2	0.20	0.60	1.2×10^{-8}

For a third experiment, a plot of $1 /[\mathrm{A}]$ versus time was found to be linear. What is the order of the reaction with respect to the concentration of A and B ?

	Order with	Order with
	Respect to [A]	Respect to [B]
A)	1	0
B)	2	1
C)	2	0
D)	0	2

Temperature and Rate

Reaction rates increase with:

1. concentration
2. temperature
3. catalyst

All explained by the collision model theory

Only small fraction of collisions produce reaction. Why?

1. Colliding molecules should have a total kinetic energy equal to or greater than a minimum value (threshold) called the activation energy, E_{a}.
2. The relative orientation of the reactants must allow the formation of any new bonds necessary to produce products (steric effect)

$$
A+B \rightarrow C+D
$$

Activation Energy (E_{a})

The minimum amount of energy required to initiate a chemical reaction

$A B^{\ddagger}$: activated complex or transition state

44

Arrhenius Equation

$\boldsymbol{k}=\boldsymbol{A} e^{-E_{d} / R T}$
$k=$ rate constant
$E_{\mathrm{a}}=$ activation energy
$R=$ the gas constant ($8.314 \mathrm{~J} / \mathrm{mol} . \mathrm{K}$)
$T=$ absolute temperature (K)
$A=$ constant; frequency factor (frequency of properly oriented collisions)
$e^{-E_{d} / R T}=$ fraction of collisions with sufficient energy rate $\propto T \quad$ rate $\propto A \quad$ rate $\propto \frac{1}{E_{a}}$

Relative Orientation:

$$
\mathrm{Cl}+\mathrm{NOCl} \rightarrow \mathrm{NO}+\mathrm{Cl}_{2}
$$

Before collision
Collision
After collision
Effective collision: reaction occurs
\bigcirc

Collision

After collision
Ineffective collision: no reaction

Arrhenius Equation

At two different temperatures:

$$
\ln k_{1}=-\frac{E_{\mathrm{a}}}{R T_{1}}+\ln A \quad \ln k_{2}=-\frac{E_{\mathrm{a}}}{R T_{2}}+\ln A
$$

Subtract \& rearrange
$\ln \frac{k_{1}}{k_{2}}=\frac{E_{\mathrm{a}}}{R}$

$$
\begin{aligned}
& \ln \frac{\boldsymbol{k}_{\mathbf{1}}}{\boldsymbol{k}_{\mathbf{2}}}=\frac{\boldsymbol{E}_{\mathrm{a}}}{\boldsymbol{R}}\left(\frac{T_{1}-T_{2}}{T_{1} T_{2}}\right) \\
& \ln \frac{\boldsymbol{k}_{473}}{\boldsymbol{k}_{573}}=\frac{\boldsymbol{E}_{\mathrm{a}}}{\boldsymbol{R}}\left(\frac{473-573}{473 \times 573}\right) \\
& \ln \frac{0.0028 \mathrm{M}^{-1} . \mathrm{s}^{-1}}{k_{573}}=\frac{1.70 \times 10^{5} \mathrm{~J} / \mathrm{mol}^{-1}}{8.314 \mathrm{~J} . \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-1}}\left(-3.69 \times 10^{-4} \mathrm{~K}^{-1}\right) \\
& k_{573}=5.29 \mathrm{M}^{-1} . \mathrm{s}^{-1} \\
& \frac{\Delta[\mathrm{HI}]}{\Delta \mathrm{t}}=2 k_{573}\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]=(2)(5.29)(0.0150)^{2} \\
& =0.00238 \text { M.s }^{-1}
\end{aligned}
$$

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HI}(\mathrm{~g})
$$

The rate law for this reaction is first order in each of the two reactants and has a $k=$ $0.0028 /$ M.s at $200^{\circ} \mathrm{C}$ measured for $-\mathrm{d}\left[\mathrm{H}_{2}\right] / \mathrm{dt}$. E_{a} for the reaction is $170 . \mathrm{kJ} / \mathrm{mol}$. What is the rate of HI formation at $300^{\circ} \mathrm{C}$ when both H_{2} and I_{2} are at a concentration of 0.0150 M ?

At $300^{\circ} \mathrm{C}(573 \mathrm{~K})$:
$\frac{\Delta[\mathrm{HI}]}{\Delta t}=2 \frac{-\Delta\left[\mathrm{H}_{2}\right]}{\Delta \mathrm{t}}=2 k_{573}\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]$
© 50
50

