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Overview: Life’s Operating Instructions 

• In 1953, James Watson and Francis Crick 
introduced an elegant double-helical model for the 
structure of deoxyribonucleic acid, or DNA 

• DNA, the substance of inheritance, is the most 
celebrated molecule of our time 

• Hereditary information is encoded in DNA and 
reproduced in all cells of the body 

• This DNA program directs the development of 
biochemical, anatomical, physiological, and (to 
some extent) behavioral traits 
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Figure 16.1 



Concept 16.1: DNA is the genetic material 

• Early in the 20th century, the identification of the 

molecules of inheritance loomed as a major 

challenge to biologists 
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The Search for the Genetic Material: 

Scientific Inquiry 

• When T. H. Morgan’s group showed that genes 
are located on chromosomes, the two components 
of chromosomes—DNA and protein—became 
candidates for the genetic material 

• The key factor in determining the genetic material 
was choosing appropriate experimental organisms 

• The role of DNA in heredity was first discovered by 
studying bacteria and the viruses that infect them 
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Evidence That DNA Can Transform Bacteria 

• The discovery of the genetic role of DNA began 

with research by Frederick Griffith in 1928 

• Griffith worked with two strains of a bacterium, one 

pathogenic and one harmless 
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• When he mixed heat-killed remains of the 

pathogenic strain with living cells of the harmless 

strain, some living cells became pathogenic 

• He called this phenomenon transformation, now 

defined as a change in genotype and phenotype 

due to assimilation of foreign DNA 
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• In 1944, Oswald Avery, Maclyn McCarty, and 

Colin MacLeod announced that the transforming 

substance was DNA 

• Their conclusion was based on experimental 

evidence that only DNA worked in transforming 

harmless bacteria into pathogenic bacteria 

• Many biologists remained skeptical, mainly 

because little was known about DNA 
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Evidence That Viral DNA Can Program Cells 

• More evidence for DNA as the genetic material 

came from studies of viruses that infect bacteria 

• Such viruses, called bacteriophages (or phages), 

are widely used in molecular genetics research 
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Animation: Phage T2 Reproductive Cycle 
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• In 1952, Alfred Hershey and Martha Chase 
performed experiments showing that DNA is the 
genetic material of a phage known as T2 

• To determine this, they designed an experiment 
showing that only one of the two components of 
T2 (DNA or protein) enters an E. coli cell during 
infection 

• They concluded that the injected DNA of the 
phage provides the genetic information 
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Figure 16.4-2 
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Figure 16.4-3 
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Additional Evidence That DNA Is the 

Genetic Material 

• It was known that DNA is a polymer of nucleotides, 

each consisting of a nitrogenous base, a sugar, 

and a phosphate group 

• In 1950, Erwin Chargaff reported that DNA 

composition varies from one species to the next 

• This evidence of diversity made DNA a more 

credible candidate for the genetic material 
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Animation: DNA and RNA Structure 

16_05DNAandRNAStructure_A.html


• Two findings became known as Chargaff’s rules 

– The base composition of DNA varies between 

species 

– In any species the number of A and T bases are 

equal and the number of G and C bases are equal 

• The basis for these rules was not understood until 

the discovery of the double helix 
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Building a Structural Model of DNA: 

Scientific Inquiry 

• After DNA was accepted as the genetic material, 

the challenge was to determine how its structure 

accounts for its role in heredity 

• Maurice Wilkins and Rosalind Franklin were using 

a technique called X-ray crystallography to study 

molecular structure 

• Franklin produced a picture of the DNA molecule 

using this technique 
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Figure 16.6 

(a) Rosalind Franklin (b) Franklin’s X-ray diffraction 
photograph of DNA 
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Figure 16.6b 
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• Franklin’s X-ray crystallographic images of DNA 

enabled Watson to deduce that DNA was helical   

• The X-ray images also enabled Watson to deduce 

the width of the helix and the spacing of the 

nitrogenous bases 

• The pattern in the photo suggested that the DNA 

molecule was made up of two strands, forming a 

double helix 
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Animation: DNA Double Helix 
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Figure 16.7 
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Figure 16.7b 

(c) Space-filling model 



• Watson and Crick built models of a double helix to 

conform to the X-rays and chemistry of DNA 

• Franklin had concluded that there were two outer  

sugar-phosphate backbones, with the nitrogenous 

bases paired in the molecule’s interior 

• Watson built a model in which the backbones were 

antiparallel (their subunits run in opposite 

directions)  
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• At first, Watson and Crick thought the bases paired 

like with like (A with A, and so on), but such 

pairings did not result in a uniform width  

• Instead, pairing a purine with a pyrimidine resulted 

in a uniform width consistent with the X-ray data 
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• Watson and Crick reasoned that the pairing was 

more specific, dictated by the base structures 

• They determined that adenine (A) paired only with 

thymine (T), and guanine (G) paired only with 

cytosine (C) 

• The Watson-Crick model explains Chargaff’s 

rules: in any organism the amount of A = T, and 

the amount of G = C 
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Figure 16.8 
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Concept 16.2: Many proteins work 

together in DNA replication and repair 

• The relationship between structure and function is 

manifest in the double helix 

• Watson and Crick noted that the specific base 

pairing suggested a possible copying mechanism 

for genetic material 

© 2011 Pearson Education, Inc. 



The Basic Principle: Base Pairing to a 

Template Strand 

• Since the two strands of DNA are complementary, 

each strand acts as a template for building a new 

strand in replication 

• In DNA replication, the parent molecule unwinds, 

and two new daughter strands are built based on 

base-pairing rules 
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Animation: DNA Replication Overview 
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Figure 16.9-2 
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Figure 16.9-3 
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• Watson and Crick’s semiconservative model of 

replication predicts that when a double helix 

replicates, each daughter molecule will have one 

old strand (derived or “conserved” from the parent 

molecule) and one newly made strand 

• Competing models were the conservative model 

(the two parent strands rejoin) and the dispersive 

model (each strand is a mix of old and new) 
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• Experiments by Matthew Meselson and Franklin 

Stahl supported the semiconservative model  

• They labeled the nucleotides of the old strands 

with a heavy isotope of nitrogen, while any new 

nucleotides were labeled with a lighter isotope 
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• The first replication produced a band of hybrid 

DNA, eliminating the conservative model 

• A second replication produced both light and 

hybrid DNA, eliminating the dispersive model and 

supporting the semiconservative model 
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Figure 16.11a 
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Figure 16.11b 
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DNA Replication: A Closer Look 

• The copying of DNA is remarkable in its speed 

and accuracy 

• More than a dozen enzymes and other proteins 

participate in DNA replication 
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Getting Started 

• Replication begins at particular sites called 

origins of replication, where the two DNA 

strands are separated, opening up a replication 

“bubble” 

• A eukaryotic chromosome may have hundreds or 

even thousands of origins of replication 

• Replication proceeds in both directions from each 

origin, until the entire molecule is copied 
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Animation: Origins of Replication 
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Figure 16.12 

(a) Origin of replication in an E. coli cell (b) Origins of replication in a eukaryotic cell 
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Figure 16.12a 

(a) Origin of replication in an E. coli cell 
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Figure 16.12b 

(b) Origins of replication in a eukaryotic cell 
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• At the end of each replication bubble is a 
replication fork, a Y-shaped region where new 
DNA strands are elongating 

• Helicases are enzymes that untwist the double 
helix at the replication forks 

• Single-strand binding proteins bind to and 
stabilize single-stranded DNA 

• Topoisomerase corrects “overwinding” ahead of 
replication forks by breaking, swiveling, and 
rejoining DNA strands 
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• DNA polymerases cannot initiate synthesis of a 

polynucleotide; they can only add nucleotides to 

the 3 end 

• The initial nucleotide strand is a short RNA 

primer 
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• An enzyme called primase can start an RNA 

chain from scratch and adds RNA nucleotides one 

at a time using the parental DNA as a template 

• The primer is short (5–10 nucleotides long), and 

the 3 end serves as the starting point for the new 

DNA strand 
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Synthesizing a New DNA Strand 

• Enzymes called DNA polymerases catalyze the 

elongation of new DNA at a replication fork 

• Most DNA polymerases require a primer and a 

DNA template strand 

• The rate of elongation is about 500 nucleotides 

per second in bacteria and 50 per second in 

human cells 

© 2011 Pearson Education, Inc. 



• Each nucleotide that is added to a growing DNA 

strand is a nucleoside triphosphate 

• dATP supplies adenine to DNA and is similar to 

the ATP of energy metabolism 

• The difference is in their sugars: dATP has 

deoxyribose while ATP has ribose 

• As each monomer of dATP joins the DNA strand, 

it loses two phosphate groups as a molecule of 

pyrophosphate 

© 2011 Pearson Education, Inc. 



Figure 16.14 
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Antiparallel Elongation 

• The antiparallel structure of the double helix 

affects replication 

• DNA polymerases add nucleotides only to the free 

3end of a growing strand; therefore, a new DNA 

strand can elongate only in the 5to3direction 
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• Along one template strand of DNA, the DNA 

polymerase synthesizes a leading strand 

continuously, moving toward the replication fork 
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Animation: Leading Strand 
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Figure 16.15a 
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• To elongate the other new strand, called the 

lagging strand, DNA polymerase must work in the 

direction away from the replication fork 

• The lagging strand is synthesized as a series of 

segments called Okazaki fragments, which are 

joined together by DNA ligase 
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Animation: Lagging Strand 
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Figure 16.16a 
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Figure 16.16b-1 
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Figure 16.16b-2 
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Figure 16.16b-3 
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Figure 16.16b-4 
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Figure 16.16b-5 
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Figure 16.16b-6 
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Figure 16.17 
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Figure 16.17a 
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The DNA Replication Complex 

• The proteins that participate in DNA replication 

form a large complex, a “DNA replication machine” 

• The DNA replication machine may be stationary 

during the replication process 

• Recent studies support a model in which DNA 

polymerase molecules “reel in” parental DNA and 

“extrude” newly made daughter DNA molecules 
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Animation: DNA Replication Review 
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Figure 16.18 

Parental DNA 

DNA pol III 

Leading strand 

Connecting 
protein 

Helicase 

Lagging strand DNA  
pol III 

Lagging 
strand 
template 

5 

5 

5 

5 

5 

5 

3 3 

3 
3 

3 

3 



Proofreading and Repairing DNA 

• DNA polymerases proofread newly made DNA, 

replacing any incorrect nucleotides 

• In mismatch repair of DNA, repair enzymes 

correct errors in base pairing 

• DNA can be damaged by exposure to harmful 

chemical or physical agents such as cigarette 

smoke and X-rays; it can also undergo 

spontaneous changes 

• In nucleotide excision repair, a nuclease cuts 

out and replaces damaged stretches of DNA 
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Figure 16.19 
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Evolutionary Significance of Altered DNA 

Nucleotides 

• Error rate after proofreading repair is low but not 

zero 

• Sequence changes may become permanent and 

can be passed on to the next generation 

• These changes (mutations) are the source of the 

genetic variation upon which natural selection 

operates 
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Replicating the Ends of DNA Molecules 

• Limitations of DNA polymerase create problems 
for the linear DNA of eukaryotic chromosomes 

• The usual replication machinery provides no way 
to complete the 5 ends, so repeated rounds of 
replication produce shorter DNA molecules with 
uneven ends 

• This is not a problem for prokaryotes, most of 
which have circular chromosomes 
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Figure 16.20a 
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Figure 16.20b 
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• Eukaryotic chromosomal DNA molecules have 

special nucleotide sequences at their ends called 

telomeres 

• Telomeres do not prevent the shortening of DNA 

molecules, but they do postpone the erosion of 

genes near the ends of DNA molecules 

• It has been proposed that the shortening of 

telomeres is connected to aging 
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Figure 16.21 
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• If chromosomes of germ cells became shorter in 

every cell cycle, essential genes would eventually 

be missing from the gametes they produce 

• An enzyme called telomerase catalyzes the 

lengthening of telomeres in germ cells 
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• The shortening of telomeres might protect cells 

from cancerous growth by limiting the number of 

cell divisions 

• There is evidence of telomerase activity in cancer 

cells, which may allow cancer cells to persist 
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Concept 16.3 A chromosome consists of a 

DNA molecule packed together with proteins 

• The bacterial chromosome is a double-stranded, 

circular DNA molecule associated with a small 

amount of protein 

• Eukaryotic chromosomes have linear DNA 

molecules associated with a large amount of 

protein 

• In a bacterium, the DNA is “supercoiled” and found 

in a region of the cell called the nucleoid 

© 2011 Pearson Education, Inc. 



• Chromatin, a complex of DNA and protein, 

is found in the nucleus of eukaryotic cells 

• Chromosomes fit into the nucleus through 

an elaborate, multilevel system of packing 
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Animation: DNA Packing 
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Figure 16.22a 
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Figure 16.22b 
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Figure 16.22c 
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• Chromatin undergoes changes in packing during 

the cell cycle 

• At interphase, some chromatin is organized into a 

10-nm fiber, but much is compacted into a 30-nm 

fiber, through folding and looping 

• Though interphase chromosomes are not highly 

condensed, they still occupy specific restricted 

regions in the nucleus 
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• Most chromatin is loosely packed in the nucleus 

during interphase and condenses prior to mitosis 

• Loosely packed chromatin is called euchromatin 

• During interphase a few regions of chromatin 

(centromeres and telomeres) are highly 

condensed into heterochromatin 

• Dense packing of the heterochromatin makes it 

difficult for the cell to express genetic information 

coded in these regions 
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• Histones can undergo chemical modifications that 
result in changes in chromatin organization 
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Figure 16.UN03 
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