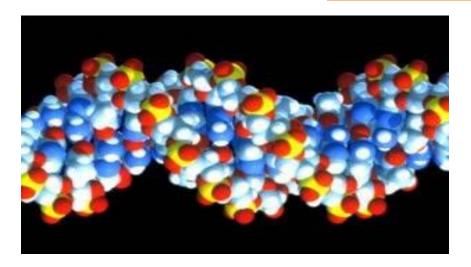

Organic Chemistry 1st Semester 2013 – 2014 Chem 104

Chapter 1 Structure & Bonding



What is Organic Chemistry?

- "Organic" until mid 1800's referred to compounds from living sources
- Today, organic compounds are those based on carbon structures and organic chemistry studies their structures and reactions
 - Includes biological molecules, drugs, solvents, dyes
 - Does not include metal salts and materials (inorganic)

Some Organic Compounds

DNA

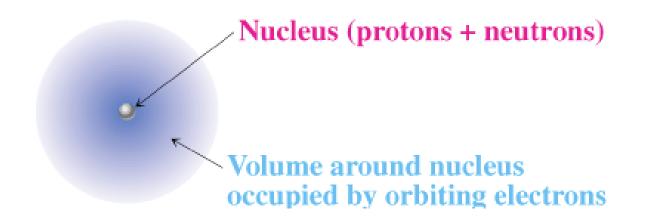
Materials

Essential oils

Medicines

- Active Pharmaceutical Ingredients
- •Excipients

Fuels



Pigments

Atomic Structure

- Structure of an atom
 - Positively charged *nucleus* (very dense, protons and neutrons) and small (10⁻¹⁵ m) in diameter
 - Negatively charged electrons are in a cloud (10⁻¹⁰ m) around nucleus

Atomic Number and Atomic Mass

- The *atomic number* (*Z*) is the number of protons in the atom's nucleus
- The *mass number* (*A*) is the number of protons plus neutrons
- All the atoms of a given element have the same atomic number
- Isotopes are atoms of the same element that have different numbers of neutrons and therefore different mass numbers
- The **atomic mass** (*atomic weight*) of an element is the weighted average mass in atomic mass units (amu) of an element's naturally occurring isotopes

Atomic Structure: Orbitals

- Four different kinds of orbitals for electrons based on those derived for a hydrogen atom
- Denoted *s*, *p*, *d*, and *f*
- *s* and *p* orbitals most important in organic chemistry
- s orbitals: spherical, nucleus at center
- *p* orbitals: dumbbell-shaped, nucleus at middle

Numbers of Orbitals and electrons in the First Three Shells

TABLE 1.1 NUI	MBERS OF C	RBITALS AN	ID ELECTRO	INS IN THE FIRST THREE SHELLS
		Number of orbitals of each type		
Shell number	s	р	d	Total number of electrons when shell is filled
1	1	0	0	2
2	1	3	0	8
3	1	3	5	18

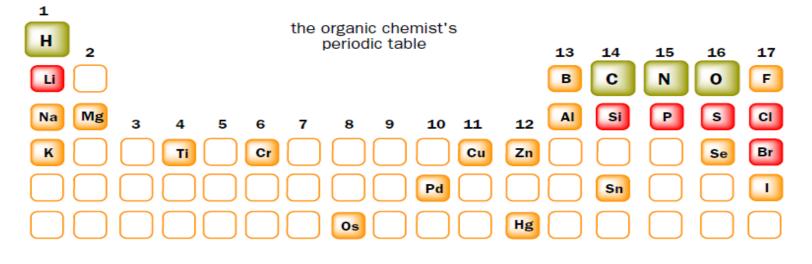
Atomic Structure: Electron Configurations

- Ground-state electron configuration of an atom lists orbitals occupied by its electrons. Rules:
- 1. Lowest-energy orbitals fill first: $1s \rightarrow 2s$ $\rightarrow 2p \rightarrow 3s \rightarrow 3p \rightarrow 4s \rightarrow 3d$
- 2. Electron spin can have only two orientations, up ↑ and down ↓. Only two electrons can occupy an orbital, and they must be of opposite spin

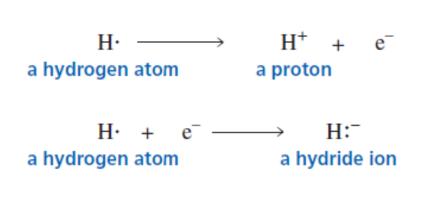
Electron Arrangements of the First 18 elements

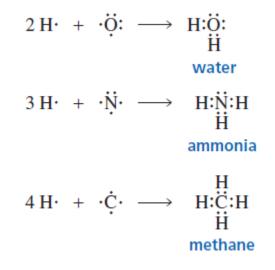
		Number of electrons in each orbita				1
Atomic number	Element	1s	2s	2р	3s	3µ
1	Н	1				
2	He	2				
3	Li	2	1			
4	Be	2	2			
5	В	2	2	1		
6	С	2	2	2		
7	Ν	2	2	3		
8	0	2	2	4		
9	F	2	2	5		
10	Ne	2	2	6		
11	Na	2	2	6	1	
12	Mg	2	2	6	2	
13	AI	2	2	6	2	1
14	Si	2	2	6	2	2
15	Р	2	2	6	2	3
16	S	2	2	6	2	4
17	CI	2	2	6	2	5
18	Ar	2	2	6	2	6

CHEMICAL BONDS: THE OCTET RULE


Why do atoms bond together? more stable (has less energy)

G. N. Lewis proposed that an atom is most stable if its outer shell is either filled or contains eight electrons and it has no electrons of higher energy (Octet rule).

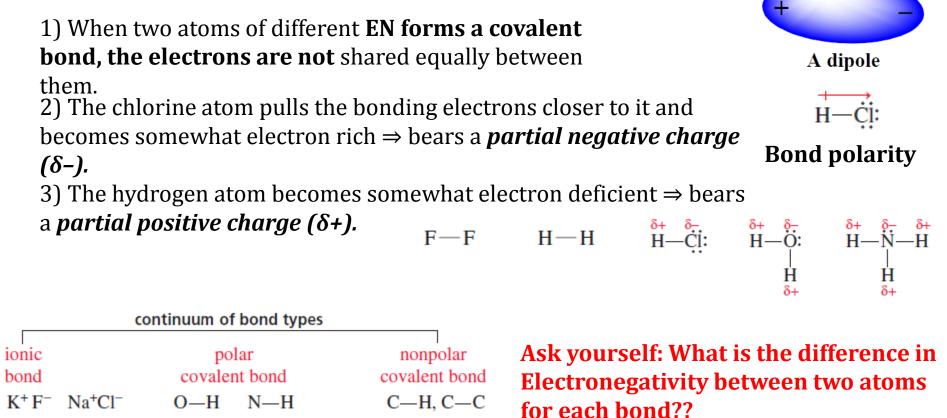

How to describe bonding?


1) The **ionic (or electrovalent) bond:** formed by the transfer of one or more electrons from one atom to another to create ions.

2) The covalent bond: results when atoms share electrons.

ionic bond

Know also these terminologies:


core electrons, valence electrons, valence shell, electropositive atom and electronegative atom.

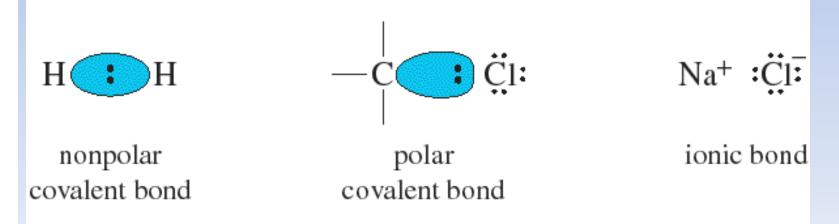
Hint: remember always Octet rule

Electronegativity: is the tendency of an atom to pull bonding electrons toward itself.

		IIB	AIII	IVA	VA	VIA	VIIA
Be			В	С	N	0	F
1.5			2.0	2.5	3.0	3.5	4.0
Mg			Al	Si	Р	S	Cl
1.2			1.5	1.8	2.1	2.5	3.0
K Ca						Br	
0.8 1.0						2.8	
increasing electronogativity						Ι	
Increasing electronegativity 2.5							
	1.5 Mg 1.2 Ca 1.0	1.5 Mg 1.2 Ca 1.0	1.5 Mg 1.2 Ca 1.0	1.5 2.0 Mg Al 1.2 1.5 Ca 1.0	1.5 2.0 2.5 Mg Al Si 1.2 1.5 1.8	1.5 2.0 2.5 3.0 Mg 1.2 1.5 1.8 2.1 Ca 1.0 1.0 1.0 1.1	1.5 2.0 2.5 3.0 3.5 Mg 1.2 1.5 1.8 2.1 2.5 Ca 1.0 1.0 1.0 1.0 1.0

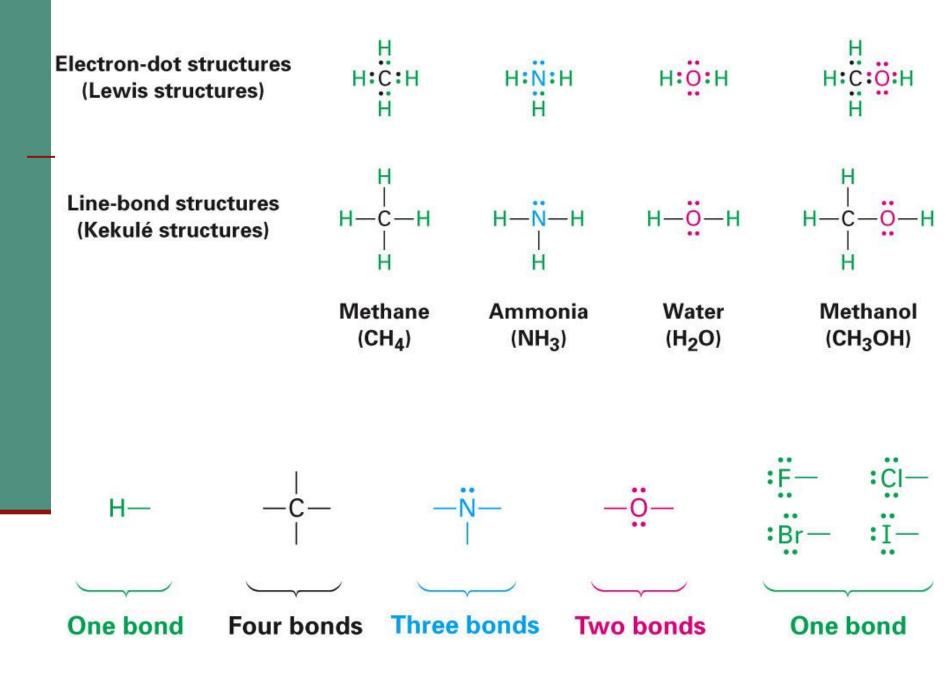
Polar and non-polar Covalent Bonds:

a. t	he most pola	r bond?	b. 1	the least polar bond?
N	VaI	LiBr	Cl_2	KCl


Which of the following has

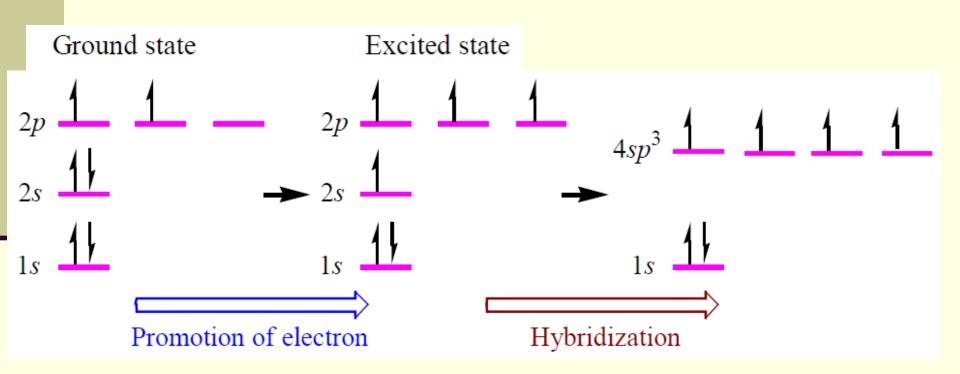
PROBLEM

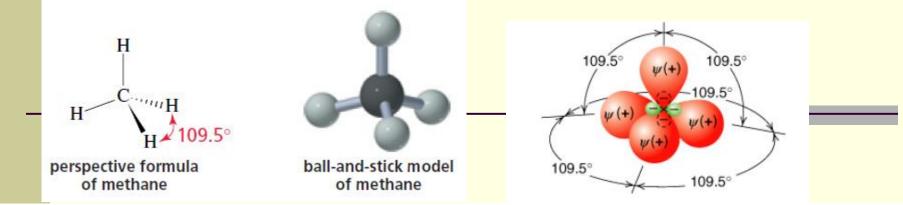
Understanding Organic Reactions


1-Bonding (Bond Formation Bond Making)

 Covalent bond: electron pair is shared. (Nonpolar and polar Covalent bond)
Ionic bond: electrons are transferred.

Tetrahedral		🔨 Trigonal-pyram	idal Bent
	Bondi		7.5°
Methane, CH ₄		Ammonia, NH	-
4 bond pairs		3 bond pairs	2 bond pairs
no lone pairs		1 lone pair	2 lone pairs
	Valence	# Bonds	# Lone Pair

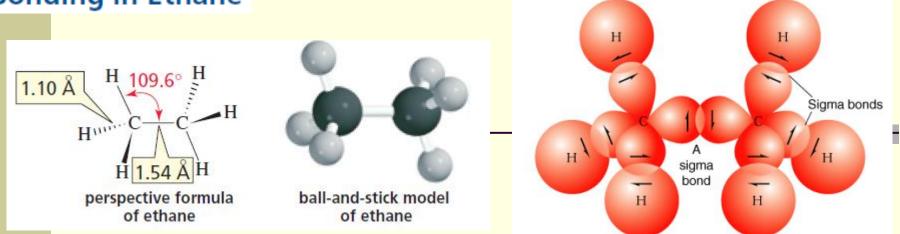

	Valence electrons	# Bonds	# Lone Pair Electrons
С	4	4	0
Ν	5	3	1
Ο	6	2	2
Halides (F, Cl, Br, I)	7	1	3


HYBRIDIZATION

THE STRUCTURE OF METHANE AND ETHANE: sp^3 Hybridzation

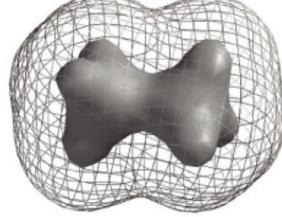
Orbital hybridization: A mathematical approach that involves the combining of individual wave functions for s and p orbitals to obtain wave functions for new orbitals \Rightarrow hybrid atomic orbitals

Bonding in Methane

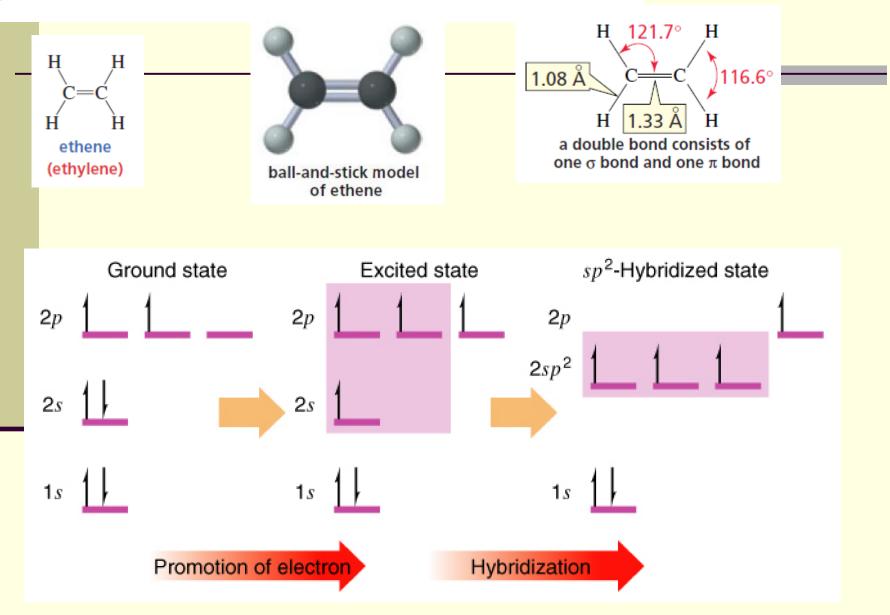

The four sp^3 orbitals should be oriented at angles of 109.5° with respect to each other \Rightarrow an sp^3 -hybridized carbon gives a tetrahedral structure for methane.

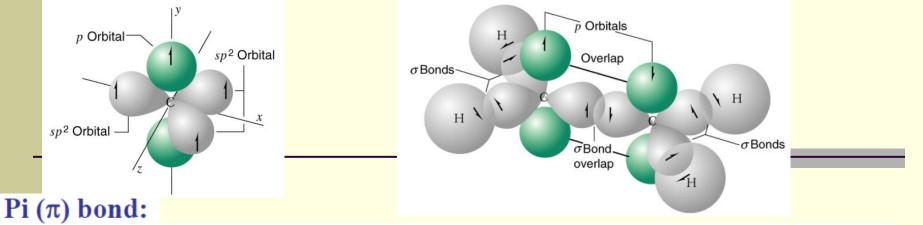
The greater the overlap achieved (the larger integral), the stronger the bond formed.

Sigma (o) bond:


- A bond that is circularly symmetrical in cross section when viewed along the bond axis.
- 2) All purely single bonds are sigma bonds.


Bonding in Ethane


Free rotation about C-C:


A sigma bond has cylindrical symmetry along the bond axis \Rightarrow rotation of groups joined by a single bond does not usually require a large amount of energy \Rightarrow free rotation.

THE STRUCTURE OF ETHENE (ETHYLENE): *sp*² **Hybridzation**

The parallel p orbitals overlap above and below the plane of the σ framework.

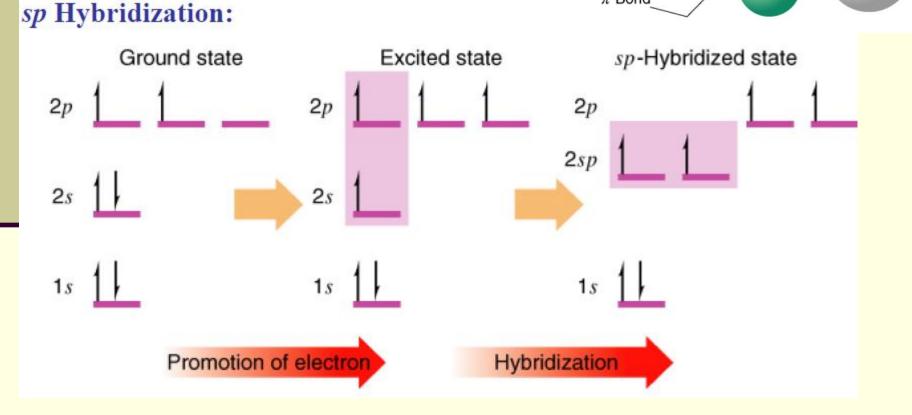
The sideway overlap of p orbitals results in the formation of a π bond.

A π bond has a nodal plane passing through the two bonded nuclei and between the π molecular orbital lobes.

Restricted rotation in double bond

There is a large energy barrier to rotation associated with groups joined by a

double bond.


The strength of the π bond is 264 KJ mol⁻¹ (63.1 Kcal mol⁻¹) \Rightarrow the rotation barrier of double bond.

The rotation barrier of a C–C single bond is 13-26 KJ mol⁻¹ (3.1-6.2 Kcal mol⁻¹).

THE STRUCTURE OF ETHYNE (ACETYLENE): sp Hybrid Acetylene) $\begin{array}{c} H - C = C - H \\ ethyne \\ (acetylene) \end{array}$

a triple bond consists of one

 σ bond and two π bonds

 π Bond

) _Н

Summary

Bond lengths of Ethyne, Ethene, and Ethane

The shortest C–H bonds are associated with those carbon orbitals with the greatest *s* character.

Organic Molecules and Functional Groups

Functional Groups: Hydrocarbons

Hydrocarbons are compounds made up of only the elements carbon and hydrogen. They may be aliphatic or aromatic.

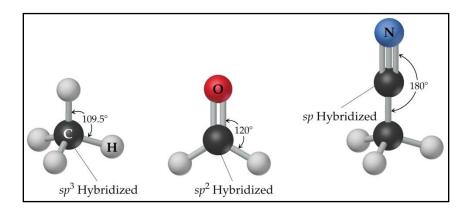

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 3.1	Hydrocarbons		
Type of compound	General structure	Example	Functional group
Alkane	R—H	CH ₃ CH ₃	
Alkene	}c=c⟨	H C=C H H	double bond
Alkyne	—C≡C—	H−C≡C−H	triple bond
Aromatic compound			phenyl group

Carbon's Hybridization

Carbon can exhibit three different types of hybridization...

- *sp*³ hybridized carbons for **tetrahedral** geometries (Alkanes).
- *sp*² hybridized carbons for **trigonal planar** geometries (Alkenes).
- sp hybridized carbons for linear geometries (Alkynes).

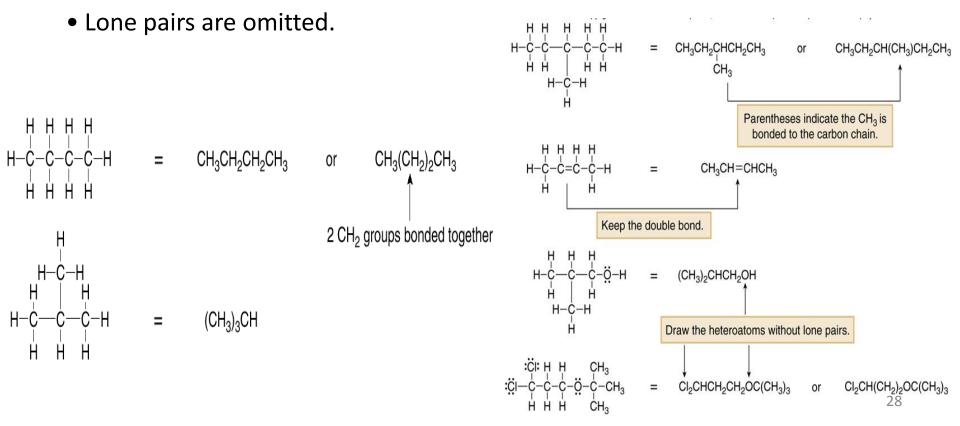
Remember: Carbon's hybridization relates to the # of atoms that it is bonded to... 4 atoms= sp^3 3 atoms= sp^2 2 atoms= sp

Organic Molecules and Functional Groups

Functional Groups: Heteroatoms

Table 3.2	Compounds Containin	g C–Z σ Bonds		
Type of compound	General structure	Example	3-D structure	Functional group
Alkyl halide	R—X: (X = F, Cl, Br, I)	СН ₃ −ё́г:		−X halo group
Alcohol	R−ÖH	СН ₃ —ÖН	**	-OH hydroxy group
Ether	R-Ö-R	сн₃−ё−сн₃	<u>*</u> 2*2	-OR alkoxy group
Amine	R—NH ₂ or R ₂ NH or R ₃ N	CH₃−ŇH₂		−NH₂ amino group
Thiol	R−ÿH	сн ₃ — <u>ё</u> н	*3	-SH mercapto group
Sulfide	R−Š−R	сн ₃ - <u>ё</u> -сн ₃	<u>*</u> ***	−SR alkylthio group

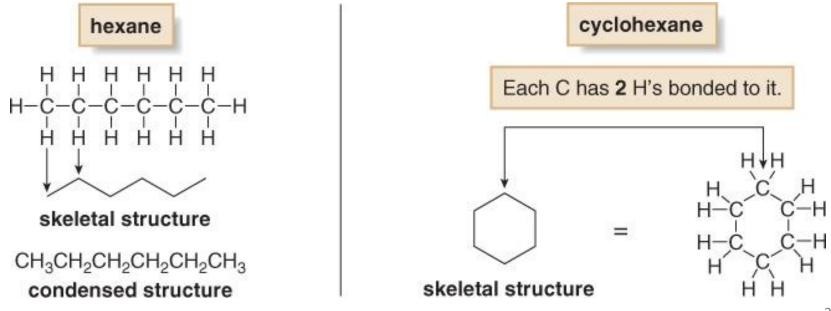
Functional Groups: Carbonyl groups


Table 3.3	Compounds Containing	g a C=O Group		
Type of compound	General structure	Example	3-D structure	Functional group
Aldehyde	:0: Н	:0: = СН ₃ С_Н	35	C=O carbonyl group
Ketone	:0: "" R^ ^C _R	:0: Ш СН3 ^С СН3	3.3	C=O carbonyl group
Carboxylic acid	:0: П В^С_ÖН	:0: = сн ₃ ^{_С} оён		-COOH carboxy group
Ester	R ^C ÖR	:0: "С сн ₃ -С ÖСн ₃		-COOR
Amide	R ^C N ^H (or R) H (or R)	:0: " сн ₃ ^{-С} -йн ₂		-CONH ₂ , -CONHR, or -CONR ₂
Acid chloride	°C: ₽ ^{⊂⊂} ∼Ċ:	:0: СН3 ^С С,ё:	-	-coci

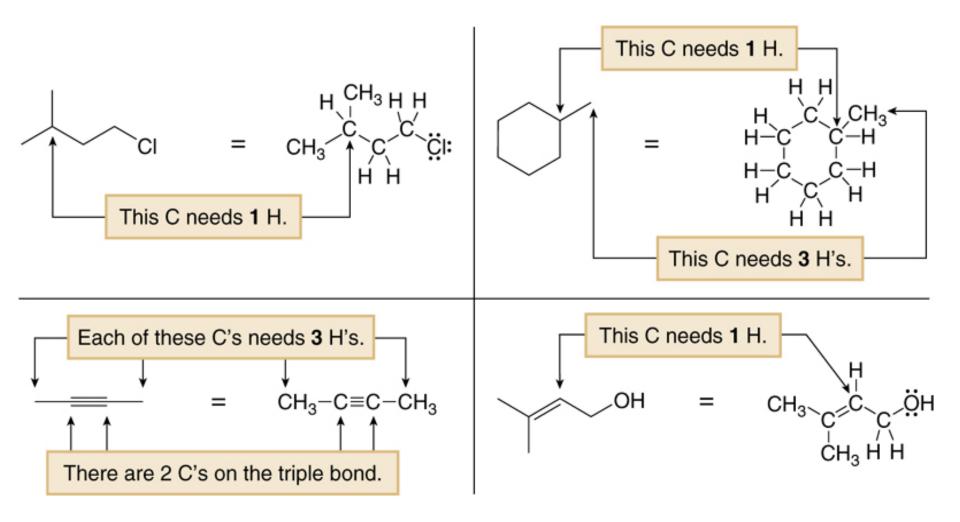
Structure and Bonding

Drawing Organic Molecules:

Condensed Structures


- All atoms are drawn, but the two-electron bond lines are generally omitted.
- Atoms are usually drawn next to the atoms to which they are bonded.
- Parentheses are used around similar groups bonded to the same atom.

Structure and Bonding


Skeletal (Line) Structures:

- Assume there is a carbon atom at the junction of any two lines or at the end of any line.
- Assume there are enough hydrogens around each carbon to make it tetravalent.
- Draw in all heteroatoms and hydrogens directly bonded to them.

Structure and Bonding

Examples of Skeletal (LINE) Structures:

THE END OF CHAPTER 1 BONDING AND ISOMERISM

BEST WISHES AND GOOD LUCK