Below please note some examples for the second exam.
Good luck.
<Q> Glucose levels of males are normally distributed with a mean of $\mathbf{1 7 0} \mathbf{~ m g} / \mathbf{d L}$ and a standard deviation of $8 \mathrm{mg} / \mathrm{dL}$, Which of the following statements is true about this population:
<C+> 95% of the population have Glucose levels between $154 \mathrm{mg} / \mathrm{dL}$ and $186 \mathrm{mg} / \mathrm{dL}$ <C> 80% of the population have Glucose levels between $154 \mathrm{mg} / \mathrm{dL}$ and $186 \mathrm{mg} / \mathrm{dL}$ <C> 85% of the population have Glucose levels between $154 \mathrm{mg} / \mathrm{dL}$ and $186 \mathrm{mg} / \mathrm{dL}$ <C> 97% of the population have Glucose levels between $154 \mathrm{mg} / \mathrm{dL}$ and $186 \mathrm{mg} / \mathrm{dL}$ <C> 90% of the population have Glucose levels between $154 \mathrm{mg} / \mathrm{dL}$ and $186 \mathrm{mg} / \mathrm{dL}$
<C> Population C.I. cannot be estimated from the provided data.
<Q> Glucose levels of males are normally distributed with a mean of $\mathbf{1 7 0} \mathbf{~ m g} / \mathrm{dL}$ and a standard deviation of $8 \mathrm{mg} / \mathrm{dL}$.

What percentage of males will have a blood sugar levels between $162 \mathrm{mg} / \mathrm{dL}$ and $178 \mathrm{mg} / \mathrm{dL}$?
<C+> 68\%
<C> 50%
<C> 30\%
<C> 97\%
<C> 95\%
<Q> Glucose levels of males are normally distributed with a mean of $\mathbf{1 7 0} \mathbf{~ m g} / \mathbf{d L}$ and a standard deviation of $8 \mathrm{mg} / \mathrm{dL}$. What is the probability of selecting a male who has blood sugar level of $\mathbf{1 7 0} \mathbf{~ m g} / \mathrm{dL}$ or more?
<C+> 0.5000
<C> 0.6000
<C>0.2734
<C>0.2500
<C>0.2266
<Q> If the sample mean of a data set is $\mathbf{1 5}$ and the sample standard deviation is 9.

What percent of the data would you expect to fall between 6 and 24, assuming that the data distribution is normal?
<C+> 68 percent
<C> 81.5 percent
<C> 95 percent
<C> 99.7 percent
<Q> If an observation has $\mathbf{2 . 0 0}$ standard deviations below the mean (m), then the z score is:
<C>2.00
$<\mathrm{C}+>-2.00$
<C>0.00
<C> $2.00+1.96$
<C>2.00 + 1.96 m
<C>2.00 + m
<Q> If an observation has $\mathbf{2}$ standard deviations above the mean (m), then the \mathbf{z} score is:
$<\mathrm{C}+>2.00$
<C>-2.00
<C> 0.00
<C>2.00 + 1.96
<C>2.00+1.96 m
<C>2.00 +m
<Q> Pulse rates of adult men are normally distributed with a mean of 70 and a standard deviation of 8 .

Which choice correctly describes how to find the percentage of men that have: a pulse rate more than 78?
<C>Find the area to the left of $\mathrm{z}=1$ under a standard normal curve.
$<\mathrm{C}>$ Find the area between $\mathrm{z}=-1$ and $\mathrm{z}=1$ under a standard normal curve.
<C+> Find the area to the right of $\mathrm{z}=1$ under a standard normal curve.
<C>Find the area to the left of $\mathrm{z}=2.00$ under a standard normal curve.
<C> Find the area to the left of $\mathrm{z}=-2.00$ under a standard normal curve.
<Q> Heart Rates of a group of patients follow a normal distribution with a mean of 65 beats/min and a standard deviation of 12 beats $/ \mathrm{min}$.

Approximately what percentage of the patients have a heart rate below 50 beats/min?

Note that:

```
<C+> 11\%
<C> 89\%
<C> 15\%
<C> 18\%
<C>39\%
<C>50\%
```

The cumulative probability for $\quad \mathrm{z}=1.25=\mathbf{0 . 8 9 4 4}$
The cumulative probability for $\quad \mathbf{z}=\mathbf{- 1 . 2 5}=\mathbf{0 . 1 0 5 6}$
<Q> Heart Rates of a group of patients follow a normal distribution with a mean of 65 beats $/ \mathrm{min}$ and a standard deviation of 12 beats $/ \mathrm{min}$. Approximately what percentage of the patients have a heart rate above 50 beats/min?

Note that:
The cumulative normal probability for $\quad \mathrm{z}=1.25=\mathbf{0 . 8 9 4 4}$
The cumulative normal probability for $\mathrm{z}=\mathbf{- 1 . 2 5}=\mathbf{0 . 1 0 5 6}$
<C> 11%
<C+> 89\%
<C> 15\%
<C> 18\%
<C> 39\%
<C>50\%
<Q>Pulse rates of adult men are normally distributed with a mean of 70 and a standard deviation of 8 . For a pulse rate of 78 , we found that the z score $=1$.

The area under the normal distribution curve for $z=1$ was found to be 0.84 . Which of the following statements is correct?
<C+> 84% of adult men have a pulse rate of 78 or less
<C> 26% of adult men have a pulse rate of 78 or less
<C> 84% of adult men have a pulse rate of 78 or more
<C> 22% of adult men have a pulse rate of 78 or more
<C> None of the answers are correct
<Q> Let x be the random variable that represents the systolic blood pressure of a certain patients in a hospital. x has a mean $=90$ and a standard deviation $=10$. We have to find the probability that x is higher than 100 or $P(x>100)$.

For $\mathrm{x}=100, \mathrm{z}=1$, and the area under the curve for $\mathrm{z}=1$ was found to be 0.84 .
Which of the following conclusions is correct?
<C+> The probability that a patients selected at a random has a systolic blood pressure greater than 100 is equal to 0.1587
<C> The probability that a patients selected at a random has a systolic blood pressure less than 100 is equal to 0.84
<C> The probability that a patients selected at a random has a systolic blood pressure greater than 100 is equal to 84%
<C> The probability that a patients selected at a random has a systolic blood pressure $=100$ is equal to 0.1587
<Q> Birthweights at a certain hospital are normally distributed with mean = 112 oz and standard deviation $=21 \mathrm{oz}$.

What is the \mathbf{z}-score for an infant with birthweight $=\mathbf{1 5 4} \mathbf{~ o z .}$?
$<\mathrm{C}+>2$
<C>21
<C>-2
<C> 154
<Q> The daily water usage per person in Amman is normally distributed with a mean of $\mathbf{2 0}$ gallons and a standard deviation of 5 gallons.

About 68% of the daily water usage per person in Amman will be between what two values?
<C+> 15 and 25 gallons.
<C> 15 and 35 gallons.
<C> 25 and 35 gallons.
<C>5 and 20 gallons.
<C> 68% and 95%

