Organic Chemistry 2th Edition
 Paula Yurkanis Bruice

Chapter 3

An Introduction to Organic Compounds

Nomenclature, Physical Properties, and
Representation of

Structure

© 2011 Pearson Education, Inc.

Alkanes are hydrocarbons containing only single Bonds saturated (no more H's can be added) General formula: $\mathbf{C} n \mathrm{H} 2 n+2$

Table 2.1 Nomenclature and Physical Properties of Straight-Chain Alkanes

Number of carbons	Molecular formula	Name	Condensed structure	Boiling point $\left({ }^{\circ} \mathbf{C}\right)$	Melting point $\left({ }^{\circ} \mathbf{C}\right)$	Density $(\mathbf{g} / \mathbf{m L})$
1	CH_{4}	methane	CH_{4}	-167.7	-182.5	
2	$\mathrm{C}_{2} \mathrm{H}_{6}$	ethane	$\mathrm{CH}_{3} \mathrm{CH}_{3}$	-88.6	-183.3	
3	$\mathrm{C}_{3} \mathrm{H}_{8}$	propane	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$	-42.1	-187.7	
4	$\mathrm{C}_{4} \mathrm{H}_{10}$	butane	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	-0.5	-138.3	
5	$\mathrm{C}_{5} \mathrm{H}_{12}$	pentane	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$	36.1	-129.8	0.5572
6	$\mathrm{C}_{6} \mathrm{H}_{14}$	hexane	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}$	68.7	-95.3	0.6603
7	$\mathrm{C}_{7} \mathrm{H}_{16}$	heptane	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}_{3}$	98.4	-90.6	0.6837
8	$\mathrm{C}_{8} \mathrm{H}_{18}$	octane	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}_{3}$	125.7	-56.8	0.7026
9	$\mathrm{C}_{9} \mathrm{H}_{20}$	nonane	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CH}_{3}$	150.8	-53.5	0.7177
10	$\mathrm{C}_{10} \mathrm{H}_{22}$	decane	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{CH}_{3}$	174.0	-29.7	0.7299
11	$\mathrm{C}_{11} \mathrm{H}_{24}$	undecane	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{9} \mathrm{CH}_{3}$	195.8	-25.6	0.7402
12	$\mathrm{C}_{12} \mathrm{H}_{26}$	dodecane	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{10} \mathrm{CH}_{3}$	216.3	-9.6	0.7487
13	$\mathrm{C}_{13} \mathrm{H}_{28}$	tridecane	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{11} \mathrm{CH}_{3}$	235.4	-5.5	0.7546
\vdots						
20	$\mathrm{C}_{20} \mathrm{H}_{42}$	eicosane	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{18} \mathrm{CH}_{3}$	343.0	36.8	0.7886
21	$\mathrm{C}_{21} \mathrm{H}_{44}$	heneicosane	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{19} \mathrm{CH}_{3}$	356.5	40.5	0.7917
\vdots						
30	$\mathrm{C}_{30} \mathrm{H}_{62}$	triacontane	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{28} \mathrm{CH}_{3}$	449.7	65.8	0.8097

[^0]
Drawing chemical structures

Several shorthand methods have been developed to write structures. Condensed structures don't have C-H or C-C single bonds shown

methane

CH_{4}

ethane

$\mathrm{CH}_{3} \mathrm{CH}_{3}$
propane

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$

butane

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$

Copyright © 2007 Pearson Prentice Hall, Inc.

- Straight-chain alkane: An alkane that has all its carbons connected in a row (normal alkanes).
- Branched-chain alkane: An alkane that has a branching connection of carbons.

Constitutional (Structural) Isomers

- Isomers that differ in how their atoms are arranged in chains are called constitutional isomers
- Compounds other than alkanes can be constitutional isomers of one another
- They must have the same molecular formula to be isomers
Different carbon
skeletons
$\mathrm{C}_{4} \mathrm{H}_{10}$

2-Methylpropane (isobutane)

Different functional groups
$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$

Different position of functional groups $\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{~N}$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
Ethanol

Isopropylamine
and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
Butane
$\mathrm{CH}_{3} \mathrm{OCH}_{3}$
Dimethyl ether
and
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$
Propylamine

- Alkyl group (R) : The part of an alkane that remains when a hydrogen atom is removed.

Alkyl groups are derived from a parent alkane.

Methane

Ethane

Common Alkyl Groups

One carbon	Two carbons	Three carbons	
$\mathrm{CH}_{3}-$ methyl group	$\mathrm{CH}_{3}-\mathrm{CH}_{2}-$ ethyl group	(or (or " n-propyl group")	$\mathrm{CH}_{3}-\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$ isopropyl group

Butane
2-Methylpropane (isobutane)

Types of Alkyl groups

Primary carbon (1°) is bonded to one other carbon.
(c) 2007 Thomson Hiqher Education

Secondary carbon $\left(2^{\circ}\right)$
is bonded to two other carbons.

Tertiary carbon (3°) is bonded to three other carbons.

Quaternary carbon (4°) is bonded to four other carbons.

Primary hydrogens $\left(\mathrm{CH}_{3}\right)$

A tertiary hydrogen (CH)

© 2007 Thomson Higher Education

Different Kinds of Carbons and Hydrogens

primary hydrogens
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$

secondary hydrogens $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHOH}$ $\stackrel{+}{\mathrm{CH}_{3}}$

Copyright © 2007 Pearson Prentice Hall, Inc.

Nomenclature of Alkanes

The Name has Prefix+Parent + Suffix

1. Determine the number of carbons in the longest continuous chain and Number the chain so that the substituent gets the lowest number

© 2011 Pearson Education, Inc.

4-isopropyloctane
2. Number the substituents to yield the lowest possible number in the number of the compound
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
$\mathrm{CH}_{3} \quad \mathrm{CH}_{2} \mathrm{CH}_{3}$
5-ethyl-3-methyloctane not
4-ethyl-6-methyloctane because $3<4$

2,4-dimethylhexane

5-ethyl-2,5-dimethylheptane
3. If the same substituent numbers are obtained in both directions, the first group cited receives the lower number

5-ethyl-3-methylheptane

Give the systematic name of the alkanes shown below.

4-ethyl-2,2,7-trimethylnonane
© 2011 Pearson Education, Inc.

Cycloalkanes: $\mathrm{C}_{n} \mathrm{H}_{2 n}$

or

or

cyclobutane $\mathrm{C}_{4} \mathrm{H}_{8}$

or

cyclopentane $\mathrm{C}_{5} \mathrm{H}_{10}$

or

cyclohexane $\mathrm{C}_{6} \mathrm{H}_{12}$

or

cycloheptane $\mathrm{C}_{7} \mathrm{H}_{14}$

Cycloalkanes contain rings of carbon atoms.

Nomenclature of Cycloalkanes

1. No number is needed for a single substituent on a ring

methylcyclopentane
O 2011 Pearson Education, Inc.

ethylcyclohexane
2. Name the two substituents in alphabetical order

1-methyl-2-propylcyclopentane (c) 2011 Pearson Education, Inc.

1-ethyl-3-methylcyclopentane
1,3-dimethylcyclohexane

Boiling Points of Alkanes

Branched alkanes have less surface area contact, so weaker intermolecular forces Less boiling points.

Copyright © 2005 Pearson Prentice Hall, Inc.

Arrange the following compounds in order of decreasing their boiling points?

A) $1<2<3<4$
C) $2<3<1<4$
B) $1<4<3<2$
D) $4<1<3<2$

Conformations of Alkanes: Rotation about Carbon-Carbon Bonds

Newman projections

$\stackrel{60^{\circ}}{\rightleftharpoons}$

staggered conformer from rotation about the $\mathrm{C}-\mathrm{C}$ bond in ethane

eclipsed conformer from rotation about the $\mathrm{C}-\mathrm{C}$ bond in ethane20

Different Conformations of Ethane

Astaggered conformer is more stable than an eclipsed conformer

Heats of Combustion/CH2 Alkane $+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

Q Which of the following correctly ranks the cycloalkanes in order of increasing ring strain per methylene?

- A) cyclopropane < cyclobutane < cyclohexane < cyclopentane
- B) cyclohexane < cyclopentane < cyclobutane < cyclopropane
- C) cyclohexane < cyclobutane < cyclopentane < cyclopropane
- D) cyclopentane < cyclopropane < cyclobutane < cyclohexane

Chair Conformer

chair conformation

viewed along the "seat" bonds

Newman projection
Copyright © 2005 Pearson Prentice Hall, Inc.

Axial and Equatorial Positions

=>
© 2011 Pearson Education, Inc.

Steric Strain of 1,3-Diaxial Interaction in Methylcyclohexane

Ring Flipping in Cyclohexane

1,3-Diaxial Interactions

1,3-diaxial interactions
more stable by $1.7 \mathrm{kcal} / \mathrm{mol}(7.1 \mathrm{~kJ} / \mathrm{mol})$ Copyright © 2005 Pearson Prentice Hall, Inc.

Cis-Trans Isomerism in Cycloalkanes

- Cycloalkanes are less flexible than open-chain alkanes.
- Much less conformational freedom in cycloalkanes.
- Therefore, isomerism is possible in substituted cycloalkanes
- There are two different 1,2-dimethyl-cyclopropane isomers

(b)

Constitutional isomers (different connections between atoms)

and

Stereoisomers (same connections but different threedimensional geometry)
© 2007 Thomson Hiqher Education

Geometric Isomers

Same side: cis-

cis-1,2-dimethylcyclohexane

Opposite side: trans-
trans-1-ethyl-2-methylcyclohexane

Cis-Trans Isomerism

- Cis: like groups on same side of ring
- Trans: like groups on opposite sides of ring

Cis-trans Isomerism of Di-substituted cyclohexane

- 1,2 disubstituted
-Trans is diax or dieq (most stable)
-Cis is one is $\mathbf{a x}$ and one is eq
- 1,3 disubstituted
-Trans is one is $\mathbf{a x}$ and one is eq
-Cis is diax or dieq (most stable)
- 1,4 disubstituted (as 1,2)

[^0]: ${ }^{\mathrm{a}}$ Density is temperature dependent. The densities given are those determined at $20^{\circ} \mathrm{C}\left(d^{20^{\circ}}\right)$.
 © 2011 Pearson Education, Inc.

