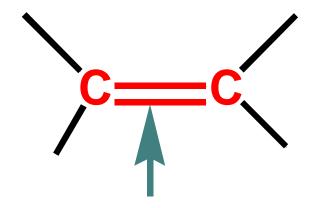
Organic Chemistry
2th Edition
Paula Yurkanis Bruice

p orbitals overlap to form a π bond


Chapter 4

Alkenes:

Structures, Nomenclature, and an Introduction to Reactivity

Alkenes

Hydrocarbons containing double bonds

double bond
the functional group
center of reactivity

4.1 Molecular Formula of Alkene

Acyclic alkene:

 C_nH_{2n}

CH₃CH=CH₂

Cyclic alkene:

 C_nH_{2n-2}

CH₃CH₂CH₂CH₂CH₃
an alkane
C₅H₁₂
C_nH_{2n+2}

 $CH_3CH_2CH_2CH = CH_2$ an alkene C_5H_{10} C_nH_{2n}

Degree of Unsaturation

- Relates molecular formula to possible structures
- Degree of unsaturation: number of multiple bonds or rings

0	1	2
H ₃ C CH ₃	H ₂ C CH ₃	HCIIIC
H ₂	H ₂ C CH ₂	CH ₃
	C H ₂	CH ₂
C_3H_8	C_3H_6	C_3H_4

4.2 Systematic Nomenclature of Alkenes

1. Longest continuous chain containing the functional group:

$$\overset{4}{\text{CH}_3}\overset{3}{\text{CH}_2}\overset{2}{\text{CH}} = \overset{1}{\text{CH}_2}$$
1-butene

© 2011 Pearson Education, Inc.

$$\overset{1}{\text{CH}_3}\overset{2}{\text{CH}} = \overset{3}{\text{CHCH}_3}\overset{4}{\text{CHCH}_3}$$
2-butene

$$\begin{array}{c}
\overset{1}{\text{CH}_3}\overset{2}{\text{CH}} = \overset{3}{\text{CHCH}_2}\overset{4}{\text{CH}_2}\overset{5}{\text{CH}_2}\overset{6}{\text{CH}_3} \\
& \overset{2}{\text{-hexene}}$$

$$\begin{array}{c} \mathbf{6} \quad \mathbf{5} \quad \mathbf{4} \quad \mathbf{3} \quad \mathbf{2} \\ \mathrm{CH_3CH_2CH_2CH_2CH_2CH_2CH_3} \\ \parallel \\ \mathbf{1} \quad \mathrm{CH_2} \\ \mathbf{2\text{-propyl-1-hexene}} \end{array}$$

the longest continuous chain has eight carbons but the longest continuous chain containing the functional group has six carbons, so the parent name of the compound is hexene

2. For a compound with two double bonds, the suffix is "diene":

$$\overset{5}{\text{CH}_{3}}\overset{4}{\text{CH}} = \overset{3}{\text{CH}} - \overset{2}{\text{CH}} = \overset{1}{\text{CH}_{2}}$$
1,3-pentadiene

@ 2011 Pearson Education, Inc.

3. When there are both a functional group and a substituent, the functional group gets the lowest number:

$$CH_3 CH_3$$

$$CH_3CH_2C = CHCH_2CHCH_2CH_3$$

$$CH_3CH_2C = CHCH_2CHCH_2CH_3$$
3,6-dimethyl-3-octene

$$Cl$$
 7
 6
 4
 3
 Br

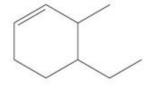
5-bromo-4-chloro-1-heptene

@ 2011 Pearson Education, Inc.

4. Name with the lowest functional group number and then the lowest substituent numbers:

$$CH_{3}CH_{2}CH_{2}C = CHCH_{2}CHCH_{3}$$

$$CH_{3} \qquad CH_{3}$$

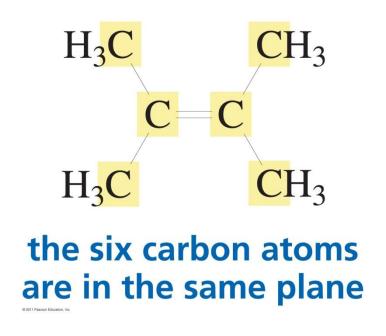

$$\textbf{2,5-dimethyl-4-octene}$$

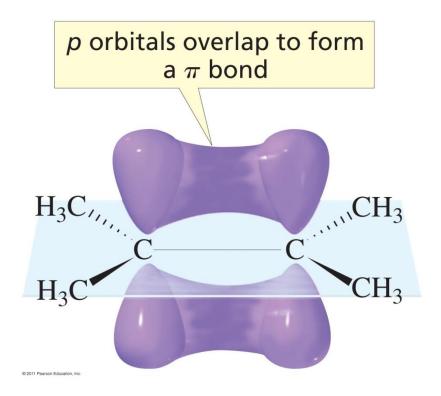
$$\textbf{not}$$

$$\textbf{4,7-dimethyl-4-octene}$$

$$\textbf{because 2} < \textbf{4}$$

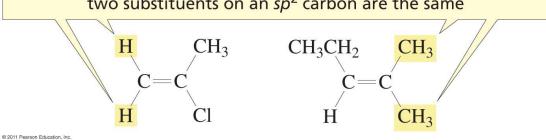
5. In a cyclic alkene, the alkene functional group is given the number 1, but the -1- is left out of the name:

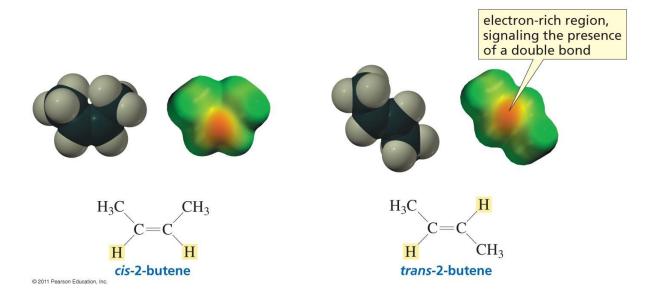


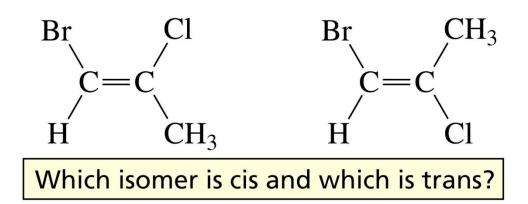

4,5-dimethylcyclohexene

4-ethyl-3-methylcyclohexene

3-ethylcyclopentene

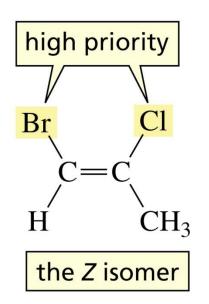

4.3 Structure of Alkene

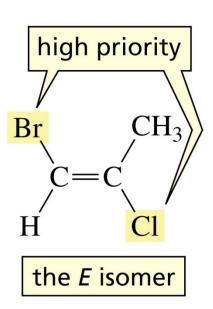



4.4 Alkene Isomers

cis and trans isomers are not possible for these compounds because two substituents on an $\it sp^2$ carbon are the same

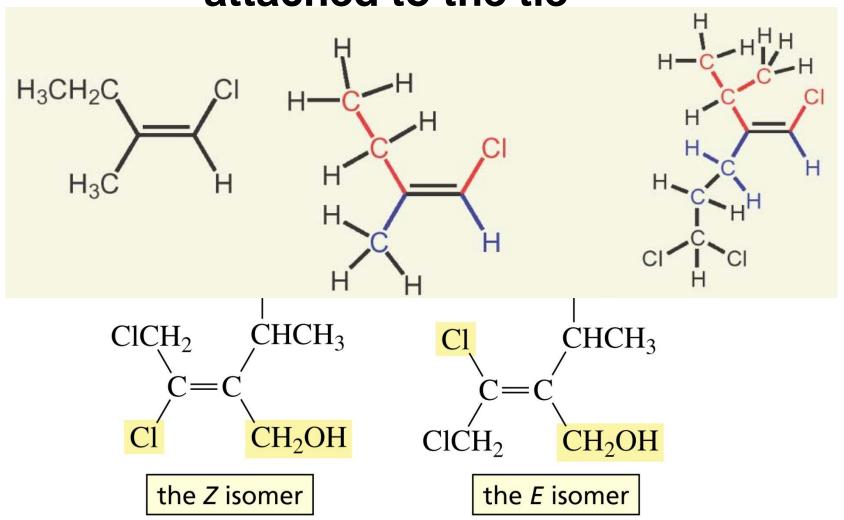
4.5 Sequence Rules: The *E,Z* Designation


E and Z isomers


Z - *zusammen,* together on the same side

E -*entgegen,* opposite sides

Ranking Priorities: Cahn-Ingold-Prelog Rules


Rule 1: Consider the atomic number of the atoms bonded directly to a specific sp^2 carbon

Higher atomic number has higher priority

Rule 2: If there is a tie, consider the atoms attached to the tie

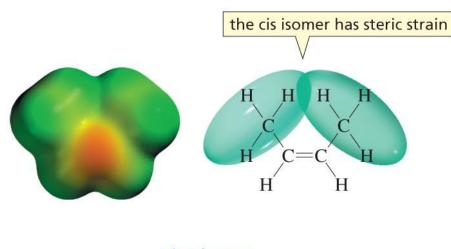
Rule 3: Multiple bonds are treated as attachment of multiple single bonds

$$H_3C$$
 $C=C$
 H_3C
 $C=C$
 $C=$

HOCH₂

$$C=C$$
 $C=C$
 CH_2CH_3
 $C=Z$
 $C=Z$

HOCH₂
$$CH_2CH_3$$
 $C=C$ $CH=CH_2$


the *E* isomer

4.6 Relative Stabilities of Alkyl-Substituted Alkenes

relative stabilities of alkyl-substituted alkenes

- Alkyl substituents stabilize alkenes
- •The most stable alkene has the greatest number of alkyl groups bonded to its sp^2 carbon.

Steric Strain in Alkenes

H H C=C H H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H C H H C

cis-2-butene

@ 2011 Pearson Education, Inc.

trans-2-butene

© 2011 Pearson Education, Inc.

are trans

$$\sim$$
 H_3C H $C=C$ H H_3C H

alkyl substituents are on the same sp² carbon

are cis