Chem 103

CHAPTER 10
 Gases

ل. جميل ملكاوي

Chapter 10
 Gases

Properties of Gases:

1. Low molar mass and simple molecular formulas. e.g., $\mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{~F}_{2}, \mathrm{Cl}_{2}, \mathrm{CH}_{4}, \mathrm{NH}_{3}, \ldots$
2. Nonmetals with covalent bonds.
3. Has no shape or volume
4. Form homogeneous mixtures.
5. Molecules are far apart.

Pressure:

Pressure: The force, F, that act on a given area, A.

$$
P=\frac{F}{A}
$$

Units of Pressure:

$$
\begin{aligned}
& P=\frac{N}{m^{2}} \\
& =N / m^{2} \\
& =N m^{2} \\
& =\operatorname{Pascal}(P a)
\end{aligned}
$$

$$
\begin{aligned}
& 1 \mathrm{kPa}=1000 \mathrm{~Pa} \\
& 1 \mathrm{bar}=1 \times 10^{5} \mathrm{~Pa}=1000 \mathrm{kPa}
\end{aligned}
$$

Atmospheric Pressure:

Atmospheric pressure: is the pressure exerted by earth's atmosphere.

Barometer: A device used to measure atmospheric pressure.

The pressure of a column of liquid is given by:

$$
P=\rho g h
$$

$\rho=$ the density of the liquid.
$\mathrm{g}=$ Gravitational acceleration.
$\mathrm{h}=$ height of the column.

Pressure of Enclosed Gases:

Manometer:

1. Open End Manometer.
2. Closed End Manometer.

Example: The pressure of a gas was measured at 750 torr with an open-end manometer filled with mercury. The result was as shown in the figure bellow. Calculate the gas pressure.
$P_{g}>P_{a t m}$
$\mathrm{P}_{\mathrm{g}}=\mathrm{P}_{\mathrm{atm}}+\mathrm{P}_{\mathrm{Hg}}$
$\mathrm{P}_{\mathrm{atm}}=750$ torr

$P_{\mathrm{Hg}}=10 \mathrm{~cm} \mathrm{Hg}=100 \mathrm{~mm} \mathrm{Hg}=100$ torr
$\mathrm{P}_{\mathrm{g}}=750+100=850$ torr

The Gas Laws:

The properties of Gases depends on the Variables:

1. Pressure
2. Volume
3. Temperature
4. Amount of Gas
5. The Pressure-volume Relationship: Boyle's Law

$$
\begin{aligned}
& y=a x \\
& V=\text { constant } \times \frac{1}{P} \\
& \text { or } \\
& P V=\text { constant } \\
& \qquad V \alpha \frac{1}{\boldsymbol{P}} \\
& \quad \boldsymbol{P V}
\end{aligned}
$$

Boyle's Law: The volume of a fixed quantity of gas maintained at constant temperature is inversely proportional to the pressure of the gas.

2. The Temperature-Volume Relationship:

Charle's and Gay-Lussac's Law

$V=$ constant $\times T$
$V \propto T$
$\frac{V}{T}=$ constant

3. The Quantity-Volume Relationship: Avogadros Law

Abstract

Gay-Lussac Law of Combining Volumes: At a given pressure and temperature, the volumes of gases that react with one another are in the ratios of small whole numbers.

Avogadro's Hypothesis: Equal volumes of gases at the same temperature and pressure contain equal number of molecules.
22.4 L of any gas at STPcontain Avogadro's number of molecule
22.4 L of any gas at STPcontains imole (6.022×10^{23} molecule)

$$
\begin{aligned}
& V \alpha n \\
& V=\text { constant } \times n \\
& \text { or } \\
& \frac{V}{n}=\text { constant }
\end{aligned}
$$

The Ideal Gas Law:

$$
\begin{aligned}
& V \alpha \frac{1}{P} \\
& V \alpha T \\
& V \alpha n
\end{aligned}
$$

$$
V \alpha \frac{n T}{P}
$$

$$
V=R\left(\frac{n T}{P}\right)
$$

$$
V=\frac{n R T}{P}
$$

$$
P V=n R T
$$

Ideal Gas Law: $\quad \mathrm{PV}=\mathrm{nRT}$

Ideal Gas: a hypothetical gas whose pressure, volume and temperature are completely described by the ideal gas law.

The Gas Constant R:

$$
\begin{aligned}
\mathrm{R} & =0.08206 \mathrm{~L} \mathrm{~atm} / \mathrm{K} \mathrm{~mol} \\
& =8.314 \mathrm{~Pa} \mathrm{~m}^{3} / \mathrm{K} \mathrm{~mol} \\
& =8.314 \mathrm{~J} / \mathrm{K} \mathrm{~mol}
\end{aligned}
$$

Standard Temperature and Pressure (STP)

Standard Temperature $=0{ }^{\circ} \mathrm{C}=273 \mathrm{~K}$
Standard Pressure $=1 \mathrm{~atm}=760$ torr

Molar Volume of a gas: is the volume of 1 mol of a gas.

At STP the molar volume of a gas

$$
\begin{aligned}
& V=\frac{n R T}{P} \\
& V=\frac{1 \mathrm{~mol} \times 0.0821 \mathrm{Latm} / \mathrm{K} \mathrm{~mol} \times 273 \mathrm{~K}}{1 \mathrm{~atm}} \\
& V=22.41 \mathrm{~L}
\end{aligned}
$$

Example: The pressure of a gas in a can 1.5 atm at $25^{\circ} \mathrm{C}$. What would be the pressure if the can is heated to $400^{\circ} \mathrm{C}$?

$$
\begin{aligned}
& \frac{P}{T}=\frac{n R}{V}=\text { cons } \tan t \\
& \frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}} \\
& \frac{1.5}{298}=\frac{P_{2}}{673} \\
& P_{2}=3.4 \mathrm{~atm}
\end{aligned}
$$

Example: A balloon has a volume of 6 L at 1 atm and $22^{\circ} \mathrm{C}$. What is the volume of the balloon at 0.45 atm at $-21^{\circ} \mathrm{C}$?

$$
\begin{aligned}
& \frac{P V}{T}=n R=\text { cons } \tan t \\
& \frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \\
& \frac{1 \times 6}{295}=\frac{0.45 \times V_{2}}{252} \\
& V_{2}=11.4 \quad L
\end{aligned}
$$

Molar Mass of Gases:

$$
P V=n R T
$$

$$
\begin{aligned}
& n=\frac{m}{M} \\
& P V=\left(\frac{m}{M}\right) R T \\
& M=\frac{m R T}{P V}
\end{aligned}
$$

Density of Gases:

The density of a gas with molar mass $=\mathrm{M}$

$$
\begin{gathered}
d=\frac{m}{V} \\
M=\left(\frac{m}{V}\right) \frac{R T}{P} \\
M=\frac{d R T}{P} \\
d=\frac{P M}{R T}
\end{gathered}
$$

Example: What is the density of $\mathrm{CCl}_{4}(\mathrm{M}=154$ $\mathrm{g} / \mathrm{mol}$) vapor at 714 torr and $125^{\circ} \mathrm{C}$?

$$
\begin{aligned}
& d=\frac{P M}{R T} \\
& d=\frac{\left(\frac{714}{760}\right) \mathrm{atm} \times 154 \frac{\mathrm{~g}}{\mathrm{~mol}}}{0.0821 \frac{\mathrm{~atm} \mathrm{~L}}{\mathrm{~K} \mathrm{~mol}} \times 398 \mathrm{~K}}=4.43 \mathrm{~g} / \mathrm{L}
\end{aligned}
$$

Gas Stoichiometry: Volume of Gases In

Chemical Reactions

$$
2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

Example: Car airbags are filled N_{2} by the reaction:

$$
2 \mathrm{NaN}_{3(\mathrm{~s})} \rightarrow 2 \mathrm{Na}_{(\mathrm{s})}+3 \mathrm{~N}_{2}
$$

If an air bag has a volume of 36 L is to be filled N_{2} at 1.15 atm and $26^{\circ} \mathrm{C}$. How many grams of NaN_{3} must be decomposed?

Mole s of N_{2} needed to fill the page:

$$
\begin{aligned}
& P V=n R T \\
& n=\frac{P V}{R T} \\
& n=\frac{1.15 \times 36}{0.0821 \times 299}=1.7 \mathrm{~mol}
\end{aligned}
$$

mole of NaN_{3} needed $=1.7 \mathrm{~mol} \mathrm{~N}_{2} \times \frac{2 \mathrm{~mol} \mathrm{NaN}}{3} 3 \mathrm{~mol} \mathrm{~N}_{23} \quad 1.13 \mathrm{~mol}$ grams of NaN_{3} needed $=1.13 \mathrm{~mol} \mathrm{NaN}_{3} \times \frac{65 \mathrm{~g} \mathrm{NaN}}{3} 1 \mathrm{~mol} \mathrm{NaN}_{3} \quad=73 \mathrm{~g}$

Gas Mixtures: Dalton's Law of Partial

Pressures

John Dalton:
$\mathrm{P}_{\mathrm{t}}=$ Total pressure
$\mathrm{P}_{1}=$ Partial pressure of gas 1

$$
P_{t}=P_{1}+P_{2}+P_{3}+\ldots
$$

$$
\begin{aligned}
& P_{1}=\frac{n_{1} R T}{V} \\
& P_{2}=\frac{n_{2} R T}{V}
\end{aligned}
$$

$$
P_{t}=\left(n_{1}+n_{2}+n_{3}+\ldots \ldots .\right) \frac{R T}{V}
$$

$$
P_{t}=\frac{n_{t} R T}{V}
$$

Partial Pressure and Mole Fraction:

$$
\frac{P_{1}}{P_{t}}=\frac{n_{1} \frac{R T}{V}}{n_{t} \frac{R T}{V}}
$$

$$
\frac{P_{1}}{P_{t}}=\frac{n_{1}}{n_{t}}
$$

$$
\frac{P_{1}}{P_{t}}=X_{1}
$$

$$
P_{1}=X_{1} P_{t}
$$

Where $X_{1}=$ mole fraction of gas 1
In general

$$
P_{i}=X_{i} P_{i}
$$

Collecting Gas Over Liquid:

Example: A sample of KClO_{3} was decomposed and the evolved O_{2} was collected over water according to the reaction:
$2 \mathrm{KClO}_{3(\mathrm{~s})} \longrightarrow 2 \mathrm{KCl}_{(\mathrm{s})}+3 \mathrm{O}_{2(\mathrm{~g})}$
The volume of gas collected was 250 mL at 765 torr and $26^{\circ} \mathrm{C}$. Calculate:
A. The number of moles of O_{2} collected if the vapor pressure of water at $26^{\circ} \mathrm{C}$ is 25 torr.
B. The grams of KClO_{3} decomposed.

$$
\begin{aligned}
& \mathrm{V}=250 \mathrm{~mL}=0.25 \mathrm{~L} \\
& \mathrm{~T}=26^{\circ} \mathrm{C}=299 \mathrm{~K} \\
& \mathrm{P}=765-25=740 \text { torr }=0.974 \mathrm{~atm}
\end{aligned}
$$

$n_{02}=\frac{P V}{R T}$
$n_{O 2}=\frac{0.974 \times 0.25}{0.0821 \times 299}=9.9 \times 10^{-3} \mathrm{~mol}$
$\mathrm{g} \mathrm{KClO}_{3}=9.9 \times 10^{-3} \mathrm{~mol} \mathrm{O}_{2} \times \frac{2 \mathrm{~mol} \mathrm{KClO}_{3}}{3 \mathrm{~mol} \mathrm{O}_{3}} \times \frac{122.6 \mathrm{~g} \mathrm{KClO}_{3}}{1 \mathrm{~mol} \mathrm{KClO}_{3}}$
$g \mathrm{KClO}_{3}=0.811$

Molecular Diffusion and Effusion:

Diffusion: The spread of a substance through space.
The average speed of molecules (u)

$$
u \alpha \frac{1}{\sqrt{M}}
$$

Lighter gaseous molecules diffuses faster than heavy molecules.

Effusion: The escape of gas molecules through tiny holes.

Rate of effusion (r)

$$
r \alpha \frac{1}{\sqrt{M}}
$$

ROOT MEAN SQUARE SPEED ($\mathrm{u}_{\mathrm{rms}}$):

$$
\mathrm{u}_{\mathrm{rms}}=\sqrt{\frac{3 R T}{M}}
$$

To compare the rate of effusion of different

$$
\frac{r_{2}}{r_{1}}=\sqrt{\frac{M_{1}}{M_{2}}}
$$

Example: An unknown gas composed of homonuclear diatomic molecules effuses at a rate that is only 0.355 times that of oxygen at the same temperature. What is the formula of the unknown gas?

$$
\begin{aligned}
\frac{r_{x}}{r_{O_{2}}} & =\sqrt{\frac{M_{O_{2}}}{M_{x}}} \\
\frac{r_{x}}{r_{O_{2}}} & =0.355
\end{aligned}
$$

$$
0.355=\sqrt{\frac{32}{M_{x}}}
$$

$$
(0.355)^{2}=\frac{32}{M_{x}}
$$

$$
M_{x}=\frac{32}{(0.355)^{2}}=254 \mathrm{~g} / \mathrm{mol}
$$

