Chemistry 103

Chapter 13

Physical
 Properties of Solutions

د. جميل ملكاوي

Chapter 13
 Physical Properties of Solutions

Solution: Uniform dispersal of one substance or more throughout another (Homogeneous mixture).

1. Solute: the minor component in solution.
2. Solvent: the major component in solution.

Types of Solutions:

1. Saturated Solution: Contains the maximum amount of solute that will dissolve in a given amount of solvent.
2. Unsaturated Solution: the solvent contains less solute than it has capacity to dissolve.
3. Supersaturated Solution: the solvent contains more solute than it has the capacity to dissolve.

Solvation: the interaction between the solute and solvent molecules.

Hydration: the interaction between the solute and solvent molecules when the solvent is water.

Concentration Units:
 1. Mass Percent:

mass $\%$ of $A=\frac{\text { mass of } A}{\text { mass of Solution }} \times 100$
$\% \mathrm{~A}+\% \mathrm{~B}+\% \mathrm{C}+\ldots .=100$
2. Part Per Million (ppM):
ppm of $A=\frac{\text { mass of } A}{\text { mass of Solution }} \times 10^{6}$

Used for dilute solutions.
3. Par per Billion (ppb):

$$
\text { ppb of } A=\frac{\text { mass of } A}{\text { mass of Solution }} \times 10^{9}
$$

Used for ultradilute solutions.
4. Mole fraction (X):
mole fraction of $A=\frac{\text { moles of } A}{\text { Total moles of all components }}$ or
$X_{A}=\frac{n_{A}}{n_{A}+n_{B}+n_{c}+\ldots \ldots}$
$X_{A}+X_{B}+X_{C}+\ldots=1$

5. Molarity (M):

$$
\text { molarity }=\frac{\text { moles of solute }}{\text { Liters of solution }}
$$

or

$$
M=\frac{n}{V(L)}
$$

6. Molality (m):

$$
\text { molality }=\frac{\text { moles of solute }}{\text { kilog rams of solvent }}
$$

or

$$
m=\frac{n}{k g^{\prime} s}
$$

Example: A solution is made by mixing 4.35 g glucose ($\mathrm{M}=180.2 \mathrm{~g} / \mathrm{mol}$) in 25 g of water. The density of the solution is $1.05 \mathrm{~g} / \mathrm{mL}$. Calculate the concentration of glucose in:

1. mass percent:

$$
\text { mass } \% \text { of } A=\frac{\text { mass of } A}{\text { mass of Solution }} \times 100
$$

$$
\begin{aligned}
\% g l u \cos e & =\frac{4.35}{(4.35+25)} \times 100 \\
& =15 \%
\end{aligned}
$$

2. mole fraction.

$$
\begin{aligned}
& X_{g l u c o s e}=\frac{n_{g l u c o s e}}{n_{g l u c o s e}+n_{H 2 O}} \\
& n_{g l u c o s e}=\frac{4.35 \mathrm{~g}}{180.2 \mathrm{~g} / \mathrm{mol}}=0.024 \\
& n_{H 2 O}=\frac{25}{18}=1.39 \\
& X_{\text {glucose }}=\frac{0.024}{0.024+1.39}=0.017
\end{aligned}
$$

3. in molarity:

molality $=\frac{\text { moles of solute }}{\text { Liters of solution }}$
moles of glu $\cos e=0.024$
volume of solution $=$ massofsolution $\times \frac{1}{\text { density }}$
volume of solution $=(4.35+25) \times \frac{1}{1.05}=27.9 \mathrm{~mL}$
molarity $=\frac{0.024}{0.0279}=0.86 \mathrm{M}$

4. In molality.

molality $=\frac{\text { moles of solute }}{\text { kilog rams of solvent }}$
moles of glu $\cos e=0.024$
kilog rams of solvebt $=25 \mathrm{~g}=0.025 \mathrm{~kg}$
$m=\frac{0.024}{0.025}=0.096 \mathrm{~m}$

Example: A 100 g sample of mineral water was found to contain 2.5 mg of sodium. Calculate the concentration of sodim in
A. ppm

$$
\begin{aligned}
& \text { ppm of } A=\frac{\text { mass of } A}{\text { mass of Solution }} \times 10^{6} \\
& \text { ppm of } N a=\frac{2.5 \times 10^{-3}}{100} \times 10^{6}=25 \mathrm{ppm}
\end{aligned}
$$

B. ppb.
ppb of $A=\frac{\text { mass of } A}{\text { mass of Solution }} \times 10^{9}$
$p p b$ of $N a=\frac{2.5 \times 10^{-3}}{100} \times 10^{9}=25 \times 10^{3} p p b$

Example: An aqueous solution of HCl contains $36 \% \mathrm{HCl}$ by mass and has density of $1.1 \mathrm{~g} / \mathrm{mL}$. Calculate the concentration of this solution:
A. mole fraction.
B. in molality.
C. In molarity.

100 g of solution contains 36 g of HCl and 64 g of $\mathrm{H}_{2} \mathrm{O}$
A.

$$
X_{H C l}=\frac{n_{H C L}}{n_{H C l}+n_{H 2 O}}
$$

$n_{H C l}=\frac{36 .}{36.5}=0.98 \mathrm{~mol}$
$n_{H 2 O}=\frac{64}{18}=3.6 \mathrm{~mol}$
$X_{H C l}=\frac{0.98}{0.98+3.6}=0.21$
B.

$$
\begin{aligned}
& \mathrm{m}_{\mathrm{HCl}}=\frac{\mathrm{mol} \mathrm{HCl}}{\mathrm{~kg}^{\prime} \mathrm{s} \text { of } \mathrm{H} 2 \mathrm{O}} \\
& \mathrm{~m}_{\mathrm{HCl}}=\frac{0.98}{64 \times 10^{-3}}=15.3 \mathrm{~m}
\end{aligned}
$$

> C.
> $M=\frac{\mathrm{MolHCl}}{\text { Liters of solution }}$

Liters of solution $=100 \mathrm{~g} \times \frac{1 \mathrm{~mL}}{1.1 \mathrm{~g}} \times \frac{1 L}{1000 m L}=0.091 L$

$$
M=\frac{0.98}{0.091}=10.76 \mathrm{M}
$$

Example: The concentration of an aqueous solution of glucose $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{M}=180 \mathrm{~g} / \mathrm{mol})$ is $0.5 \mathrm{~mol} / \mathrm{L}$ and its density is $1.05 \mathrm{~g} / \mathrm{mL}$. Calculate the molal concentration of this solution.

1 L of solution contains $0.5 \mathrm{~mol}(90 \mathrm{~g})$ of glucose.
The mass of 1 L of solution is $=1000 \mathrm{~mL} \times 1.05 \mathrm{~g} / \mathrm{mL}$

$$
=1050 \mathrm{~g}
$$

1050 g of a solution contain $0.5 \mathrm{~mol}(90 \mathrm{~g})$ of glucose and 960 g of $\mathrm{H}_{2} \mathrm{O}$.

$$
\begin{aligned}
& \mathrm{m}_{\text {glucose }}=\frac{\mathrm{mol} \text { glucose }}{\mathrm{kg}^{\prime} \mathrm{s} \text { of } \mathrm{H}_{2} \mathrm{O}} \\
& \mathrm{~m}_{\mathrm{HCl}}=\frac{0.5}{960 \times 10^{-3}}=0.52 \mathrm{~m}
\end{aligned}
$$

Example: the molality of a solution of glucose in water is $1 \mathrm{~mol} / \mathrm{kg}$ and its density is $1.07 \mathrm{~g} / \mathrm{mL}$. Calculate the molarity of glucose in this solution.

1 mol glucose $=180 \mathrm{~g}$
1180 g solution contains $1 \mathrm{~mol}(180 \mathrm{~g})$ glucose and $1000 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$.

Liters of the sol. $=1180 \mathrm{~g} \times \frac{\mathrm{mL}}{1.07 \mathrm{~g}} \times \frac{1 L}{1000 m L}=1.1 L$

$$
\begin{aligned}
& M=\frac{\text { mol glucose }}{\text { Liters of solution }} \\
& M=\frac{1 \mathrm{~mol}}{1.1 \mathrm{~L}}=0.91 \mathrm{~mol} / \mathrm{L}
\end{aligned}
$$

Colligative Properties of Nonelectrolytic Solutions:

Colligative Properties: Properties of solution that depends on concentration but not on the type of solute.

Colligative Properties are:

1. Vapor pressure lowering.
2. Freezing point depression.
3. Boiling point elevation.
4. Osmotic pressure.

1.Vapor Pressure Lowering:

Volatile substance: has a vapor pressure.
Nonvolatile substance: has no vapor pressure.

Raoults Law

$$
P_{A}=X_{A} P_{A}^{o}
$$

P_{A} the vapor pressure of A in solution X_{A} mole fraction of A
$\mathrm{P}_{\mathrm{A}}{ }^{\mathrm{o}}$ the vapor pressure of pure A .
Ideal Solution: Solutions that obey Raoult's Law.

Example: Glycerin ($\mathrm{M}=92.1 \mathrm{~g} / \mathrm{mol}$) is a non volatile substance with density of $1.26 \mathrm{~g} / \mathrm{mL}$ at $25^{\circ} \mathrm{C}$. A solution is made by mixing 50 mL of glycerin with 50 mL of water. If the vapor pressure of pure water at 25 ${ }^{\circ} \mathrm{C}$ is 23.8 torr, calculate the vapor pressure of this solution.

$$
\begin{aligned}
& P_{H 2 O}=X_{H 2 O} P^{o}{ }_{H 2 O} \\
& \text { mol glycerine }=50 \mathrm{~mL} \times 1.26 \frac{\mathrm{~g}}{\mathrm{~mL}} \times \frac{1 \mathrm{~mol}}{92.1 \mathrm{~g}}=0.684
\end{aligned}
$$

$$
\mathrm{mol} \mathrm{H}_{2} \mathrm{O}=50 \mathrm{~mL} \times 1.00 \frac{\mathrm{~g}}{\mathrm{~mL}} \times \frac{1 \mathrm{~mol}}{18 \mathrm{~g}}=2.78
$$

$$
X_{H 2 O}=\frac{2.78}{2.78+0.68}=0.80
$$

$$
P_{\mathrm{H} 2 \mathrm{O}}=0.80 \times 23.8 \mathrm{torr}=19.1 \mathrm{torr}
$$

2. Boiling Point Elevation:

$$
\Delta T_{b}=K_{b} m
$$

$\Delta \mathrm{T}_{\mathrm{b}}$ is the elevation in Boiling point.
K_{b} : the molal boiling point elevation constant. It depends only on the solvent.
m molality of solution.

3. Freezing point Depression:

$$
\Delta T_{f}=K_{f} m
$$

$\Delta \mathrm{T}_{\mathrm{f}}$ is the depression in freezing point.
K_{f} : the molal freezing point depression constant. It depends only on the solvent.
m molality of solution.

Example: Automotive antifreeze consist of ethylene glycol $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}(\mathrm{M}=62.1 \mathrm{~g} / \mathrm{mol})$ and water. Calculate the boiling point and the freezing point of a solution that is 25% ethylene glycol in water. K_{f} and K_{b} for water are $1.86^{\circ} \mathrm{C} / \mathrm{m}$ and $0.51^{\circ} \mathrm{C} / \mathrm{m}$, respectively.

100 g of solution contain 25 glycol and 75 g water.

Calculation of freezing point

$$
\begin{aligned}
& \mathrm{m}_{g l \mathrm{y}}=\frac{\mathrm{molglycol}}{\mathrm{~kg}^{\prime} \mathrm{s} \mathrm{of} \mathrm{H}_{2} \mathrm{O}} \\
& \mathrm{~mol} g l y=\frac{25}{62.1}=0.40 \\
& \mathrm{~m}_{g \mathrm{ly}}=\frac{0.4}{0.075}=5.3 \mathrm{~mol} / \mathrm{kg} \\
& \Delta T_{f}=K_{f} m \\
& \Delta T_{f}=1.86 \times 5.3=9.92^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{f}}=0-9.92=-9.92^{\circ} \mathrm{C}
\end{aligned}
$$

Calculation of boiling point

$$
\begin{aligned}
& \Delta T_{b}=K_{b} m \\
& \Delta T_{b}=0.51 \times 5.3=2.7^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{f}}=100+2.70=102.7^{\circ} \mathrm{C}
\end{aligned}
$$

Example: List the following aqueous solution in order increasing freezing point and boiling point.

1) 0.15 m NaCl
2) 0.1 m HCl
3) 0.05 m glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$
4) 0.05 m acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$.
5) $0.05 \mathrm{CaCl}_{2}$

Solution	Molality of salt	Molality of ions
NaCl	0.15	0.30
HCl	0.10	0.20
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$	0.05	0.05
$\mathrm{CH}_{3} \mathrm{COOH}$	0.05	$0.05<\mathrm{m}<0.1$
CaCl_{2}	0.05	0.15

Freezing point:
$\mathbf{N a C l}<\mathbf{H C l}<\mathrm{CaCl}_{2}<\mathrm{CH}_{3} \mathrm{COOH}<\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
Boiling point:
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}<\mathrm{CH}_{3} \mathrm{COOH}<\mathrm{CaCl}_{2}<\mathrm{HCl}<\mathrm{NaCl}$

Osmosis

Osmosis: the movement of solvent from dilute to concentrated solution.

Semipermeable membrane: membranes that are permeable to some molecules but not others.

Osmotic Pressure (π): the pressure that must be exerted to stop the movement of solvent.

$$
\begin{aligned}
& \pi \propto \mathbf{M T} \\
& \pi=M R T \\
& M=\frac{n}{V} \\
& \pi=\left(\frac{n}{V}\right) R T \\
& \pi V=n R T
\end{aligned}
$$

Isotonic Solutions: solutions that have equal osmotic pressure.
Hypotonic: a solution having lower osmotic pressure.
Hypertonic: a solution having higher osmotic pressure.

Example: What is the osmotic pressure at $20^{\circ} \mathrm{C}$ of a 0.002 M sucrose solution?

$$
\begin{aligned}
\pi & =M R T \\
\pi & =0.002 \frac{\mathrm{~mol}}{\mathrm{~L}} \times 0.0821 \frac{\mathrm{~L} \mathrm{~atm}}{K \mathrm{~mol}} \times 293 \mathrm{~K}=0.048 \mathrm{~atm}
\end{aligned}
$$

Example: The osmotic pressure of blood is 7.7 atm . What is the concentration of glucose solution that is isotonic with blood at $37^{\circ} \mathrm{C}$?

Determination of Molar Mass

Example: A solution is made by dissolving 0.25 g of unknown substance in $40 \mathrm{~g} \mathrm{CCl}_{4}\left(\mathrm{~K}_{\mathrm{b}}=5.02^{\circ} \mathrm{C} / \mathrm{m}\right)$. The boiling point of the solution was $0.357{ }^{\circ} \mathrm{C}$ higher than the boiling point of the pure solvent. Calculate the molar mass of the unknown substance.

$$
\begin{aligned}
\Delta T_{b} & =K_{b} m \\
m & =\frac{\Delta T_{b}}{K_{b}} \\
m & =\frac{0.357}{5.02}=0.0711 \mathrm{~m} \\
m & =\frac{\text { mol of solute }}{\mathrm{kg}^{\prime} \mathrm{s} \text { of solvent }}
\end{aligned}
$$

$$
\text { mol of solute }=0.0711 \frac{\mathrm{~mol}}{\mathrm{~kg}} \times 0.04 \mathrm{~kg}=2.84 \times 10^{-3}
$$

$$
m o l=\frac{m}{M}
$$

$$
M=\frac{0.25}{2.84 \times 10^{-3}}=88.0 \mathrm{~g} / \mathrm{mol}
$$

Example: The osmotic pressure of a solution made by dissolving 3.5 mg of a protein in enough water to form 5 mL solution is 1.54 torr at $25^{\circ} \mathrm{C}$. Calculate the molar mass of the protein.

$$
\begin{aligned}
& \pi=M R T \\
& M=\frac{\pi}{R T}
\end{aligned}
$$

$$
1 \mathrm{~atm}=760 \text { torr }
$$

$$
M=\frac{1.54 \mathrm{torr} \times \frac{1 \mathrm{~atm}}{760 \mathrm{torr}}}{0.0821 \mathrm{Latm} / \mathrm{K} \mathrm{~mol} \times 298 \mathrm{~K}}=8.28 \times 10^{-5} \mathrm{~mol} / \mathrm{L}
$$

mol of protein $=M \times V(L)$
mol of protein $=8.28 \times 10^{-5} \times 5 \times 10^{-3}=4.14 \times 10^{-7}$

$$
M=\frac{m}{n}
$$

$$
M=\frac{3.5 \times 10^{-3} \mathrm{~g}}{4.14 \times 10^{-7} \mathrm{~mol}}=8.45 \times 10^{3} \mathrm{~g} / \mathrm{mol}
$$

