Chemistry 102

CHAPTER 14

Chemical Kinetics

د. جمبل ملكاوي

Chapter 13

Chemical Kinetics

Speed of an event: Change in a given period of time
Rate of a reaction: Change in the concentration of a reactant or product in a certain amount of time.

Units of Rate: M/s or mol/L s.

$$
2 \mathrm{NO}_{2} \rightarrow 2 \mathrm{NO}+\mathrm{O}_{2}
$$

Average rate of consumption of $\mathrm{NO}_{2}\left(\mathrm{v}_{\mathrm{NO} 2}\right)$:

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{NO} 2}=\frac{-\Delta\left[\mathrm{NO}_{2}\right]}{\Delta t} \\
& \Delta\left[N O_{2}\right]=\left[\mathrm{NO}_{2}\right]_{\text {final }}-\left[N \mathrm{O}_{2}\right]_{\text {initial }}
\end{aligned}
$$

Instantaneous rate of consumption of $\mathrm{NO}_{2}\left(\mathrm{v}_{\mathrm{NO} 2}\right)$:

$$
\mathrm{v}_{\mathrm{NO} 2}=\frac{-d\left[\mathrm{NO}_{2}\right]}{d t}
$$

Average rate of appearance of $\mathrm{NO}\left(\mathrm{v}_{\mathrm{NO}}\right)$:

$$
\mathrm{v}_{\mathrm{NO}}=\frac{\Delta\left[N O_{2}\right]}{\Delta t}
$$

Instantaneous rate of appearance of $\mathrm{NO}\left(\mathrm{v}_{\mathrm{NO}}\right)$:

$$
\mathrm{v}_{\mathrm{NO}}=\frac{d[N O]}{d t}
$$

Initial Rate of reaction: the rate of reaction at $t=0$

$$
\text { Initial rate } \approx \text { instantaneous rate }
$$

Reaction Rate and Stoichiometry:

$$
\mathrm{A} \rightarrow \mathrm{~B}
$$

$$
\begin{gathered}
\frac{-\Delta[A]}{\Delta t}=\frac{\Delta[B]}{\Delta t} \\
v_{A}=v_{B} \\
\mathrm{~A}+2 \mathrm{~B} \rightarrow 3 \mathrm{C} \\
\frac{-d[A]}{d t}=\frac{1}{2} \frac{-d[B]}{d t}=\frac{1}{3} \frac{d[C]}{d t} \\
v_{A}=\frac{1}{2} v_{B}=\frac{1}{3} v_{c}
\end{gathered}
$$

In general:

$$
\begin{aligned}
& \mathrm{aA}+\mathrm{bB} \rightarrow \mathrm{cC}+\mathrm{dD} \\
& \frac{1}{a} v_{A}=\frac{1}{b} v_{B}=\frac{1}{c} v_{C}=\frac{1}{d} v_{D}
\end{aligned}
$$

Example: For the reaction $\mathrm{A}+2 \mathrm{~B} \rightarrow 3 \mathrm{C}$, the rate of consumption of B is $2 \times 10^{-3} \mathrm{M} / \mathrm{s}$. Calculate the rate of production of C .

$$
\begin{aligned}
& v_{A}=\frac{1}{2} v_{B}=\frac{1}{3} v_{c} \\
& v_{C}=\frac{3}{2} v_{B} \\
& v_{C}=\frac{3}{2} \times 2 \times 10^{-3}=3 \times 10^{-3} \mathrm{M} / \mathrm{s}
\end{aligned}
$$

Factors Affecting Reaction Rate:

1. Physical states of reactants.
2. Concentration of Reactants.
3. The Temperature of the reactants.
4. The presence of a catalyst.

Concentration of Reactants:

Rule: Reaction rate increases as the concentration of reactants is increased.

$$
\begin{aligned}
& \mathrm{aA}+\mathrm{bB}+\mathrm{cC} \rightarrow \text { products } \\
& \text { rate }=k[A]^{\alpha}[B]^{\beta}[C]^{\gamma} \cdots
\end{aligned}
$$

k : rate constant.
α : order of reaction in reactant A.
β : order of reaction in reactant B.
γ : order of reaction in reactant C.
$\alpha+\beta+\gamma+\ldots . .=$ overall order of reaction.
Rule: $\alpha, \beta, \gamma, .$. are empirical constants.

If $\alpha=0$, the reaction is zero order in A .
If $\alpha=1$, the reaction is first order in A.
If $\alpha=2$, the reaction is second order in A .

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2} \quad \text { rate }=\mathrm{k}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]
$$

$$
\mathrm{CHCl}_{3}+\mathrm{Cl}_{2} \rightarrow \mathrm{CCl}_{4}+\mathrm{HCl} \text { rate }=\mathrm{k}\left[\mathrm{CHCl}_{3}\right]\left[\mathrm{Cl}_{2}\right]^{1 / 2}
$$

$$
\mathrm{H}_{2}+\mathrm{I}_{2} \rightarrow 2 \mathrm{HI}
$$

$$
\text { rate }=\mathrm{k}\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]
$$

Units of Rate Constant:

Rule: Units of Rate Constant depend on the overall order of reaction.

$$
\begin{gathered}
\mathrm{A} \rightarrow \mathrm{~B} \\
\mathrm{v}=\mathrm{k}[\mathrm{~A}]^{\mathrm{n}} \\
k=\frac{v}{[A]^{n}}=\frac{M s^{-1}}{M^{n}}=M^{(1-n)} s^{-1} \\
k=M^{(1-n)} s^{-1}
\end{gathered}
$$

For first order reaction $k=\mathrm{s}^{-1}$.
For second order reaction $k=M^{-1} \mathrm{~s}^{-1}$.
For zero order reaction $k=\mathrm{M} \mathrm{s}^{-1}$.

Determination of Rate Law:

1. Initial Rate Method:

Zero order Reaction: Changing the concentration of reactant has no effect on the rate.

First Order reaction:

$$
\text { Rate }=\mathrm{k}[\mathrm{~A}]
$$

If the concentration is doubled, rate doubles.
If the concentration is tripled, rate will triple.

Second order reactions:

$$
\text { Rate }=\mathrm{k}[\mathrm{~A}]^{2}
$$

Doubling the concentration, rate increase by a factor of 4
Tripling the concentration, rate increase by a factor of 9

Example: Given the following kinetic, determine the rate law for the reaction $\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}$.

Experiment number	$[\mathrm{A}](\mathrm{M})$	$[\mathrm{B}](\mathrm{M})$	Initial rate $(\mathrm{M} / \mathrm{s})$
1	0.10	0.10	1.23×10^{-3}
2	0.10	0.20	2.46×10^{-3}
3	0.20	0.10	4.92×10^{-3}

$$
\text { rate }=k[A]^{\alpha}[B]^{\beta}
$$

Order in A: From experiments 1 and 3, Doubling the concentration of A , increases the rate by a factor of 4 .

$$
\alpha=2
$$

Order in B: From experiments 1 and 2, Doubling the concentration of A, increases the rate by a factor of 2 .

$$
\beta=1
$$

Calculation of k :

$$
\text { rate }=k[A]^{2}[B]
$$

From experiment 1:

$$
1.23 \times 10^{-3}=\mathrm{k} \times 0.1^{2} \times 0.1
$$

$$
k=\frac{1.23 \times 10^{-3}}{0.1^{3}}=1.23 M^{-2} s^{-1}
$$

2. Change of Concentration with Time:

A. First order Reactions

$$
\mathrm{A} \rightarrow \mathrm{~B}
$$

If the reaction is first order in A :

$$
\frac{-d[A]}{d t}=k[A]
$$

The concentration of A at time $=\mathrm{t}$ is given by:

$$
\begin{aligned}
& \ln [A]-\ln [A]_{0}=-k t \\
& \text { or } \\
& \ln \frac{[\mathrm{A}]_{\mathrm{t}}}{[\mathrm{~A}]_{0}}=-k t \\
& \text { or } \\
& \ln [A]=\ln [A]_{0}-k t \\
& y=a-b x
\end{aligned}
$$

Rule: For $1^{\text {st }}$ order, reaction, plot of $\ln [A]_{t}$ versus time must be straight line.

B. Second Order Reactions

$$
\mathrm{A} \rightarrow \mathrm{~B}
$$

If the reaction is first order in A :

$$
\frac{-d[A]}{d t}=k[A]^{2}
$$

The concentration of A at time $=\mathrm{t}$ is given by:

$$
\begin{aligned}
& \frac{1}{[A]_{t}}=k t+\frac{1}{[A]_{0}} \\
& y=a x+b
\end{aligned}
$$

Rule: For 2nd order, reaction, plot of $\frac{1}{[A]_{t}}$ versus time must be straight line.

Half-Life of Reactions:

Half-Life of Reactions ($\mathbf{t}_{1 / 2}$): the time needed for the concentration of a reactant to drop to one half of its initial concentration.

$$
[A]_{A / 2}=\frac{1}{2}[A]_{0}
$$

1. for $1^{\text {st }}$ order reactions:

$$
\ln \frac{[\mathrm{A}]_{\mathrm{t}}}{[\mathrm{~A}]_{0}}=-k t
$$

at $\mathrm{t}_{1 / 2}, \quad[A]_{t / 2}=\frac{1}{2}[A]_{0}$

$$
\begin{aligned}
& \ln \frac{[\mathrm{A}]_{\mathrm{t}}}{[\mathrm{~A}]_{0}}=-k t \\
& \ln \frac{\frac{1}{2}[A]_{0}}{[A]_{0}}=-k t_{1 / 2} \\
& \ln 0.5=-k t_{1 / 2} \\
& t_{1 / 2}=\frac{\ln 2}{k}=\frac{0.693}{k}
\end{aligned}
$$

3 . For $2^{\text {nd }}$ order reactions:
$\frac{1}{[A]_{t}}=k t+\frac{1}{[A]_{0}}$
$\frac{2}{[A]_{0}}=k t_{1 / 2}+\frac{1}{[A]_{0}}$
$t_{1 / 2}=\frac{1}{k[A]_{0}}$

Example: The reaction $\mathrm{A} \rightarrow \mathrm{B}$ at 500 K is first order with rate constant of $6.8 \times 10^{-4} \mathrm{~s}^{-1}$. if the initial concentration of A is 0.135 M , calculate:
A .The concentration of A after 1420 s .

$$
\begin{aligned}
& \ln [A]_{t}=\ln [A]_{0}-k t \\
& \ln [A]_{t}=\ln 0.135-6.8 \times 10^{-4} \times 1420=-2.97 \\
& {[A]_{t}=e^{-2.97}=0.051 \mathrm{M}}
\end{aligned}
$$

B. the half-life of the reaction.

For $1^{\text {st }}$ order reactions:

$$
\begin{aligned}
& t_{1 / 2}=\frac{\ln 2}{k} \\
& t_{1 / 2}=\frac{0.693}{6.8 \times 10^{-4}}=1019 \mathrm{~s}
\end{aligned}
$$

5. Effect of Temperature:

Rule: Rates of chemical reaction increases as temperature is increased.

The Collision Theory:

$$
\mathbf{A}+\mathbf{B} \rightarrow \mathbf{C}
$$

1. Molecules must collide to react.
2. The colliding molecules must have enough energy.
3. Colliding molecules must have a suitable orientation.

The Activation Energy:

$\mathrm{CH}_{3} \mathrm{NC} \quad \rightarrow \quad \mathrm{CH}_{3} \mathrm{CN}$

Activation Energy (\mathbf{E}_{a}): the mınımum amount of energy reacting molecules must process in order react.

Reactant \rightarrow Activated complex \rightarrow Products

Rule: The rate of the reaction decreases as the activation energy increases. The lower the activation energy, the faster the reaction.

The Arrhenius Equation:

$$
\begin{aligned}
& k=A e^{\frac{-E a}{R T}} \\
& \text { or } \\
& \ln k=\ln A-\frac{-E a}{R T}
\end{aligned}
$$

Where Ea: the activation energy.

A: the frequency factor.

Determination of Activation Energy:
Method (1)

$$
\begin{aligned}
& \ln k=\frac{-E a}{R T}+\ln A \\
& \ln k=\frac{-E a}{R}\left(\frac{1}{T}\right)+\ln A \\
& y=-a x+b
\end{aligned}
$$

Methode (2)

$$
\begin{aligned}
& \ln k_{1}=\frac{-E a}{R T_{1}}+\ln A \\
& \ln k_{2}=\frac{-E a}{R T_{2}}+\ln A
\end{aligned}
$$

Subtract the first equation from the second:

$$
\begin{aligned}
& \ln k_{2}-\ln k_{1}=\frac{-E a}{R T_{2}}-\frac{-E a}{R T_{1}} \\
& \ln \frac{k_{2}}{k_{1}}=\frac{E a}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)
\end{aligned}
$$

Example: The rate constant for a reaction is $1 \times 10^{-9} \mathrm{~s}^{-}$ ${ }^{1}$ at 320 K and $3 \times 10^{-8} \mathrm{~s}^{-1}$ at 340 K . Calculate the activation energy and the frequency factor for this reaction.

1. Calculation of Ea:

$$
\begin{aligned}
& \ln \frac{k_{2}}{k_{1}}=\frac{E a}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right) \\
& \ln \frac{3 \times 10^{8}}{1 \times 10^{-9}}=\frac{E a}{8.314}\left(\frac{1}{320}-\frac{1}{340}\right) \\
& 3.40=\frac{E a}{8.314} \times 1.83 \times 10^{-4} \\
& E a=\frac{3.40 \times 8.314}{1.83 \times 10^{-4}}=153775 \mathrm{~J}=153.8 \mathrm{~kJ}
\end{aligned}
$$

6. Calculation of A

$$
\begin{aligned}
& \ln k=\frac{-E a}{R T}+\ln A \\
& \ln 1 \times 10^{-9}=\frac{-153775}{8.314 \times 320}+\ln A \\
& -20.7=-57.8+\ln A \\
& \ln A=57.8-20.7=37.1 \\
& A=e^{37.1}=1.3 \times 10^{16} s
\end{aligned}
$$

