Chapter 14 exercises

Q1. Practice exercise page 576

For the reaction $A \rightarrow B$ the concentration of (B) after $40 s=0.70$ mole and at $0 s$ the concentration of $(B)=0$, calculate the average rate of appearance of (B).

Answer:

$$
\text { Average rate }=\Delta[B] / \Delta t=(0.70 \mathrm{~mol}-0 \mathrm{~mol}) /(40 \mathrm{~s}-0 \mathrm{~s})=1.8 \times 10^{-2} \mathrm{M} / \mathrm{s}
$$

Q2. Practice exercise page 578

Using the figure 14.4, determine rate instantaneous of $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}$ at $\mathrm{t}=300 \mathrm{~s}$.

Answer:

$$
\text { Rate }=-\Delta\left[\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}\right] / \Delta t=-(0.067-0.100) /(300 \mathrm{~s}-0 \mathrm{~s})=1.1 \times 10^{-4} \mathrm{M} / \mathrm{s}
$$

Q3. Practice exercise page 579
The decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ at a particular instant in a reaction vessel is $4.2 \times 10^{-7} \mathrm{M} / \mathrm{s}$, what is the rate appearance of a) NO_{2}, b) O_{2} ?

Answer:
a) Rate $=-1 / 2 \Delta\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right] / \Delta \mathrm{t}=1 / 4 \Delta\left[\mathrm{NO}_{2}\right] / \Delta \mathrm{t}=1 / 1 \Delta\left[\mathrm{O}_{2}\right] / \Delta \mathrm{t}$

$$
-\Delta\left[\mathrm{NO}_{2}\right] / \Delta t=4 / 2 \Delta\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right] / \Delta \mathrm{t}=4 / 2 \times 4.210^{-7} \mathrm{M} / \mathrm{s}
$$

b) $-\Delta\left[\mathrm{O}_{2}\right] / \Delta \mathrm{t}=1 / 2 \Delta\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right] / \Delta \mathrm{t}=1 / 2 \times 4.2 \times 10^{-7}=2.1 \times 10^{-7} \mathrm{M} / \mathrm{s}$

Q4. Practice exercise page 583
a) What is the reaction order of the reactant H_{2} in $\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{HI}_{(\mathrm{g})}$

```
Rate = k [H2][I2]
```

b) What are the units of the rate constant for the equation?

Answer:

a) The reaction order for H_{2} is $=1$.
b) over all the reaction order $1+1=2$

$$
\text { Unit of rate constant }=(\mathrm{M} / \mathrm{s}) /\left(\mathrm{M}^{2}\right)=\mathrm{M}^{-1} \mathrm{~s}^{-1}
$$

Q5. Practice exercise page 587

The following data were measured for the reaction $2 \mathrm{NO}_{(\mathrm{g})}+2 \mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{N}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
Experiment number [NO]M [$\left.\mathrm{H}_{2}\right] \mathrm{M} \quad$ initial rate (M/s)

1	0.10	0.10	1.23×10^{-3}
2	0.10	0.20	2.46×10^{-3}
3	0.20	0.10	4.92×10^{-3}

a) Determine the rate law for the reaction.
b) Calculate the rate constant.
c) Calculate the rate when $[\mathrm{NO}]=0.050 \mathrm{M}$ and $\left[\mathrm{H}_{2}\right]=0.15 \mathrm{M}$.

Answer:
a) Rate $2 /$ Rate $1=\mathrm{kx}(0.1)^{\mathrm{m}} \times(0.2)^{\mathrm{n}} / \mathrm{kx}(0.1)^{\mathrm{m}} \times(0.1)^{\mathrm{n}}=2.46 \times 10^{-3} / 1.23 \times 10^{-3}$

$$
(2 / 1)^{n}=2 \quad n=1
$$

Rate $3 /$ Rate $1=\mathrm{kx}(0.2)^{\mathrm{m}} \times(0.1)^{\mathrm{n}} / \mathrm{kx}(0.1)^{\mathrm{m}} \times(0.1)^{\mathrm{n}}=4.92 \times 10^{-3} / 1.23 \times 10^{-3}$

$$
2^{m}=4=2^{2} \quad m=2
$$

Rate law $=\mathrm{k}[\mathrm{NO}]^{2}\left[\mathrm{H}_{2}\right]$
b) $2.46 \times 10^{-3}=\mathrm{k} \times(0.1)^{2} \times(0.2)=1.23 \mathrm{M}^{-2} \mathrm{~s}^{-}$
c) rate $=1.23 \times(0.05)^{2} \times(0.15)=4.6 \times 10^{-4} \mathrm{M} / \mathrm{s}$

Q6. Practice exercise page 587

Composition of dimethyl ether $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}$ at $510^{\circ} \mathrm{C}$ is a first order process with a rate constant of
$6.8 \times 10^{-3} \mathrm{~s}^{-1} .\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}_{(\mathrm{g})} \rightarrow \mathrm{CH}_{4(\mathrm{~g})}+\mathrm{CO}_{(\mathrm{g})}$
If the initial pressure of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}$ is 135 torr. What is the pressure after 1420 s ?

Answer:

$$
\begin{aligned}
& \operatorname{Ln}[\mathrm{A}]_{t}=-k t
\end{aligned} \begin{aligned}
\operatorname{Ln}\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}\right]_{t} & =-6.8 \times 10^{-4} \mathrm{~s}^{-1} \times 1420 \mathrm{~s}+\ln (135) \\
& =-0.9656+0.3001=-0.6655
\end{aligned}
$$

$\left[\mathrm{CH}_{3}\right)_{2} \mathrm{O}=51$ torr

Q7. Practice exercise page 591

a) Calculate $t^{1 ⁄ 2}$ for decomposition of insecticide when $k=1.45 \mathrm{yr}^{-1}$.
b) How long does it take for concentration of the insecticide to reach one quarter of initial value?

Answer:
a) $t_{1 / 2}=0.693 / 1.45 \mathrm{yr}^{-1}=0.478 \mathrm{yr}$
b) one quarter $=1 / 4=1 / 2 \times 1 / 2$ which is $2 \times(1 / 2)$

$$
0.478 \mathrm{yr} \times 2=0.956 \mathrm{yr}
$$

Q8. Practice exercise page 597

Calculate the rate constant for the rearrangement of methyl iso nitrile at $280^{\circ} \mathrm{C} . \mathrm{E}_{\mathrm{a}}=160 \mathrm{KJ} / \mathrm{mol}$ and rate constant at $462.9^{\circ} \mathrm{K}=2.52 \times 10^{-5}$.

Answer:

$$
\begin{aligned}
& \operatorname{Ln}\left(\mathrm{k}_{1} / 2.52 \times 10^{-5}\right)=(160 \mathrm{KJ} / \mathrm{mol}) / 8.314 \mathrm{~J} / \mathrm{mol}-\mathrm{K})(1 / 462.9-1 / 553) \times(1000 \mathrm{~J} / 1 \mathrm{KJ}) \\
&=6.774 \\
& \mathrm{~K}_{1} / 2.52 \times 10^{-5}=\mathrm{e}^{6.774}=874.91 \\
& \mathrm{~K}_{1}=2.2 \times 10^{-2} \mathrm{~s}^{-1}
\end{aligned}
$$

Q9. Practice exercise page 595
Imagine you have three reactions with, $\mathrm{E}_{\mathrm{a}}=40,25$, and $15 \mathrm{KJ} / \mathrm{mol}$, respectively. Rank the reactions from slowest to faster.

Answer:
The lower the activation energy, the faster the reaction
$(2)<(1)<(3)$

Q10. Practice exercise 19 page 599

For the reaction $\mathrm{M}_{0}(\mathrm{CO})_{6}+\mathrm{P}\left(\mathrm{CH}_{3}\right)_{3} \rightarrow \mathrm{M}_{0}(\mathrm{CO})_{5} \mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}+\mathrm{CO}$ the proposed mechanism is:
$\mathrm{M}_{\mathrm{o}}(\mathrm{CO})_{6} \rightarrow \mathrm{M}_{0}(\mathrm{CO})_{5}+\mathrm{CO}$
$\mathrm{M}_{0}(\mathrm{CO})_{5}+\mathrm{P}\left(\mathrm{CH}_{3}\right)_{3} \rightarrow \mathrm{M}_{0}(\mathrm{CO})_{5} \mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}$
a) Is the proposed mechanism consistent with the equation for the overall reaction?
b) What is the molecularity of each step of the mechanism?
c) Identify the intermediates.

Answer:

a) yes the two equations added to yield the equation of the reaction.
b) The first reaction is unimolecular and the second step is bimolecular.
c) The intermediate is $\mathrm{M}_{\mathrm{o}}(\mathrm{CO})_{5}$.

Q11. Practice exercise 600
Consider the following reaction $2 \mathrm{NO}_{(\mathrm{g})}+\mathrm{Br}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NOBr}_{(\mathrm{g})}$
a) write the rate law for the reaction, assuming it involves a single elementary reaction.
b) Is a single step mechanism likely for this reaction.

Answer:

a) Rate $=\mathrm{k}\left[\mathrm{NO}_{\mathrm{g}}\right]^{2}\left[\mathrm{Br}_{\mathrm{g}}\right]$
b) No, because termolecular reactions are very rare.

Q12. Practice exercise page 602

Ozone reacts with nitrogen dioxide to produce dinitrogen pentaoxide and oxygen.
$\mathrm{O}_{3(\mathrm{~g})}+2 \mathrm{NO}_{2(\mathrm{~g})} \rightarrow \mathrm{N}_{2} \mathrm{O}_{5(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}$
The reaction is believed to occur two steps.
$\mathrm{O}_{3(\mathrm{~g})}+\mathrm{NO}_{2(\mathrm{~g})} \rightarrow \mathrm{N}_{3(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}$
$\mathrm{NO}_{3(\mathrm{~g})}+\mathrm{NO}_{2(\mathrm{~g})} \rightarrow \mathrm{N}_{2} \mathrm{O}_{5(\mathrm{~g})}$
The experimental rate law is rate $=\mathrm{k}\left[\mathrm{O}_{3}\right]\left[\mathrm{NO}_{2}\right]$. What can you say about the relative rates of the two steps of the mechanism?

Answer:
Because the rate law conforms to the molecularity of the first step, that must be the rate determining step. The second step must be much faster than the first one.

Exercises page 616

14.15

Consider the following aqueous reaction, $\mathrm{A}_{\mathrm{aq}} \rightarrow \mathrm{B}_{\mathrm{aq}}$. A flask is charged with 0.065 mole of (A) in total volume of 100.0 mL . The following data are collected.

Time (min)	0	10	20	30	40
Mole of (A)	0.065	0.051	0.042	0.036	0.031

a) Calculate the number of moles of (B) at each time in the table, assuming that there no molecules of (B) at time zero.
b) Calculate the average rate of disappearance of (A) for each 10 min interval in unit M / s.
c) Between $t=0 \mathrm{~min}$ and $t=30 \mathrm{~m} 9 \mathrm{n}$, what is the average rate of appearance of (B) in unit M / s ? Assume that the volume of the solution is constant.

Answer: a) and b)

Time (min)	mole A	mole B	$[A] \mathrm{mol} / \mathrm{L}$	$\Delta[\mathrm{A}]$	$\mathrm{R} \mathrm{M} / \mathrm{s}$
0	0.065	0	0.65		
10	0.051	$0.01^{\prime} 4$	0.51	-0.14	2.3×10^{-3}
20	0.042	0.023	0.42	-0.09	1.5×10^{-3}
30	0.036	0.030	0.36	-0.06	$1.0 \times 1=^{-3}$
40	0.031	0.034	0.31	-0.05	0.8×10^{-3}

b) Rate $=\Delta[B] / \Delta t=(0.36-0.51) /(30-10)=1.3 \times 10+-4 \mathrm{M} / \mathrm{s}$

14.19

For each of the following gas-phase reactions, indicate how the rate of disappearance of each reactant is related to the appearance of each product.
a) $\mathrm{H}_{2} \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}$
b) $2 \mathrm{~N}_{2} \mathrm{O}_{(\mathrm{g})} \rightarrow 2 \mathrm{~N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}$
c) $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2 \mathrm{~g})} \rightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}$

Answer:
a) $-\Delta\left[\mathrm{H}_{2} \mathrm{O}\right] / \Delta \mathrm{t}=\Delta\left[\mathrm{H}_{2}\right] / \Delta \mathrm{t}=\Delta\left[\mathrm{O}_{2}\right] / \Delta \mathrm{t}$
b) $-1 / 2 \Delta\left[\mathrm{~N}_{2} \mathrm{O}\right] / \Delta \mathrm{t}=1 / 2 \Delta\left[\mathrm{~N}_{2}\right] / \Delta \mathrm{t}=\Delta\left[\mathrm{O}_{2}\right] / \Delta \mathrm{t}$
c) $-\Delta\left[N_{2}\right] / \Delta t \quad=-1 / 3 \Delta\left[H_{2}\right] / \Delta t \quad=1 / 2 \Delta\left[\mathrm{NH}_{3}\right] / \Delta t$

14.21

a) Consider the combustion of H_{2} gas $\left(2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}\right)$. If H_{2} is burned at a rate of $0.85 \mathrm{~mol} / \mathrm{s}$. What is the rate of consumption of O_{2} ? What is the rate of formation of water Vapor?
b) the reaction $2 \mathrm{NO}_{(\mathrm{g})}+\mathrm{Cl}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NOCl}_{(\mathrm{g})}$ is carried out in close vessel. If the partial pressure of NO is decreasing at the rate of 23 torr / min, what is the rate of change of total pressure of the vessel.

Answer:
a) Rate of $\mathrm{H}_{2}=0.85 \mathrm{~mol} / \mathrm{s}$
$\left.-1 / 2 \Delta \mathrm{H}_{2}\right] / \Delta \mathrm{t}=-\Delta\left[\mathrm{O}_{2}\right] / \Delta \mathrm{t}=1 / 2 \Delta\left[\mathrm{H}_{2} \mathrm{O}\right] / \Delta \mathrm{t}$

- $1 / 2 \times 0.85=-\Delta\left[\mathrm{O}_{2}\right] / \Delta \mathrm{t}=0.425 \mathrm{~mol} / \mathrm{s}$
$1 / 2 \Delta\left[\mathrm{H}_{2} \mathrm{O}\right] / \Delta \mathrm{t}=-1 / 2 \Delta\left[\mathrm{H}_{2}\right] / \Delta \mathrm{t}=0.85 \mathrm{~mol} / \mathrm{s}$
b) $-1 / 2 \Delta[\mathrm{NO}] / \Delta t=\Delta[\mathrm{Cl}] / \Delta \mathrm{t}$

```
1/2 x 23 = \Delta[Cl] / \Deltat = 11.5 torr (11.5 torr + 23 torr = 34.5 torr/min for the reactants)
-1/2\Delta[NO]/\Deltat = 1/2\Delta[NOCl]/\Deltat
\Delta[NOCl] / \Deltat = 23 torr/min
    rate change = reactants - products = 35.5-23=11.5 = 12 torr/min
```

14.23

A reaction $n A+B \rightarrow C$ obeys the following rate law Rate $=k[B]^{2}$
a) If $[A]$ doubled. How will the rate change? Will the rate constant?
b) what are the reaction order for A and B ? what is the overall reaction order?
c) What are the units of the rate constant?

Answer:
a) If [A] doubled, there is no change in the rate or the rate constant. Because [A] does not Apper in the rate law $=\mathrm{k}[\mathrm{B}]^{2}$.
b) the reaction is zero order in A, second order in B, and second order overall.
c) unit $k=M^{-1} s^{-1}$
14.25

The decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ in CCl_{4} proceeds as follows: $2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$. The rate law is first order in $\mathrm{N}_{2} \mathrm{O}_{5}$. At $64^{\circ} \mathrm{C}$ the rate constant is $4.82 \times 10^{-3} \mathrm{~s}^{-1}$.
a) write the rate law for the reaction.
b) What is the rate of reaction when $\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]=0.024 \mathrm{M}$?
c) What happens to the rate when the concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ is doubled to 0.0480 M ?

Answer:
a) rate $=k\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]$
b) rate $=4.82 \times 10^{-3} \mathrm{~s}^{-1} \times 0.024 \mathrm{M}=1.157 \times 10^{-4} \mathrm{~m} / \mathrm{s}=1.16 \times 10^{-4} \mathrm{M} / \mathrm{s}$
c) rate $=4.82 \times 10^{-3} \mathrm{~s}^{-1} \times 0.048=2.32 \times 10^{-4}$

14.29

The iodide ion reacts with hypochlorite ion in the following way: $\mathrm{OCl}^{-}+\mathrm{I}^{-} \rightarrow \mathrm{Ol}^{-}+\mathrm{Cl}^{-}$.
This rapid reaction gives the following rate data

$\left[\mathrm{OCl}^{-}\right] \mathrm{M}$	$\left[{ }^{[1] ~ M}\right.$	rate M / s
1.5×10^{-3}	1.5×10^{-3}	1.36×10^{-4}
3.0×10^{-3}	1.5×10^{-3}	1.72×10^{-4}
1.5×10^{-3}	3.0×10^{-3}	2.72×10^{-4}

a) Write the rate law for this reaction.
b) Calculate the rate constant.
c) Calculate the rate when $\left[\mathrm{OCl}^{-}\right]=2.0 \times 10^{-3}$ and $\left[\mathrm{I}^{-}\right]=5.0 \times 10^{-4} \mathrm{M}$.

Answer:

$$
\begin{aligned}
& \text { a) Rate } 2 / \text { Rate } 1=\left[k\left(3.0 \times 10^{-3}\right)^{\mathrm{m}}\left(1.5 \times 10^{-3}\right)^{n}\right] /\left[\mathrm{k}\left(1.5 \times 10^{-3}\right)^{\mathrm{m}}\left(1.5 \times 10^{-3}\right)^{\mathrm{n}}\right] \\
& =\left(2.72 \times 10^{-4}\right) /\left(1.36 \times 10^{-4}\right)=2 \\
& \\
& \text { 2 } 2^{\mathrm{m}}=2^{1} \quad \mathrm{~m}=1 \\
& \text { Rate } 3 / \text { Rate } 1= \\
& =\left[\mathrm{k}\left(1.5 \times 10^{-3}\right)^{\mathrm{m}}\left(3.0 \times 10^{-3}\right)^{\mathrm{n}}\right] /\left[\mathrm{k}\left(1.5 \times 10^{-3}\right)^{\mathrm{m}}\left(1.5 \times 10^{-3}\right)^{\mathrm{n}}\right] \\
& =\left(2.72 \times 10^{-4}\right) /\left(1.36 \times 10^{-4}\right)=2 \\
& 2^{2}=2^{1} \quad \mathrm{n}=1 \\
& \text { b) } 1.36 \times 10^{-4} \mathrm{M} / \mathrm{s}= \\
& \mathrm{k}=6\left(1.5 \times 10^{-3} \mathrm{M}\right)\left(1.5 \times 10^{-3} \mathrm{M}\right) \\
& \text { c) rate }=60 \mathrm{M}^{-1} \mathrm{~s}^{-1} \times\left(2.0 \times 10^{-3} \mathrm{M}\right)\left(5.0 \times 10^{-4} \mathrm{M}\right)=6 / 0 \times 10^{-5} \mathrm{M} / \mathrm{s}
\end{aligned}
$$

$\underline{14.37}$

a) The gas phase decomposition of $\mathrm{SO}_{2} \mathrm{Cl}_{2}\left(\mathrm{SO}_{2} \mathrm{Cl}_{2(\mathrm{~g})} \rightarrow \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})}\right)$ is first in $\mathrm{SO}_{2} \mathrm{Cl}_{2}$. At 600 k the half-life for this process is $2.3 \times 10^{5} \mathrm{~s}$. What is the rate constant at this temperature? b)At $320^{\circ} \mathrm{C}$ the rate constant is $2.2 \times 10^{-5} \mathrm{~s}^{-1}$. What is the half-life at this temperature?

Answer:
a) $k=0.693 / t_{1 / 2}=0.693 / 2.3 \times 10^{5} \mathrm{~s}=3.0 \times 10^{-6} \mathrm{~s}^{-1}$
b) $\mathrm{t}_{1 / 2}=0.693 / 2.2 \times 10^{4} \mathrm{~s}$

14.41

The reaction $\mathrm{SO}_{2} \mathrm{Cl}_{2(\mathrm{~g})} \rightarrow \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})}$ is the first order in $\mathrm{SO}_{2} \mathrm{Cl}_{2}$. Using the following kinetic data, determine the magnitude of the first order rate constant.

time (s)	0	2,500	5,000	7,500	10,000
pressure $\mathrm{SO}_{2} \underline{C l}_{2}(\mathrm{~atm})$	1.000	0.947	0.895	0.848	0.803

Answer:

$$
\text { Slope }=(\ln 0.803-\ln 0.895) /(10,000-5,000)=(-0.2194-(-0.1109)) / 5000=2.17 \times 10^{5} \mathrm{~s}
$$

14.49

Calculate the fraction of atoms in a sample of argon gas at $400^{\circ} \mathrm{C}$ that has an energy of 10.0 KJ or greater.

Answer:

$$
\begin{aligned}
& -E_{a} / R T=-(10.0 \times 1000 \mathrm{~J}) /(8.314 \mathrm{~J} / \mathrm{mol}-\mathrm{K})(400 \mathrm{~K})=-3.007 \\
& \mathrm{f}=\mathrm{e}^{-3.007}=0.0494=4.94 \times 10^{-2}
\end{aligned}
$$

14.53

Based on their activation energies and energy changes as assuming that all collision are the same, which of the following reactions would be fastest and which would be lowest? explain your answer.
A) $\mathrm{E}_{\mathrm{a}}=45 \mathrm{KJ} / \mathrm{mol}, \quad \Delta \mathrm{E}=-25 \mathrm{KJ} / \mathrm{mol}$
b) $\mathrm{E}_{\mathrm{a}}=35 \mathrm{KJ} / \mathrm{mol}, \quad \Delta \mathrm{E}=-10 \mathrm{KJ} / \mathrm{mol}$
c) $\mathrm{E}_{\mathrm{a}}=55 \mathrm{KJ} / \mathrm{mol}, \quad \Delta \mathrm{E}=10 \mathrm{KJ} / \mathrm{mol}$

Answer:

The lowest the activation energy, the faster the reaction
(b) faster than (a) faster than (c)
b $>\mathrm{a}>\mathrm{c}$

14.55

A certain first order reaction has a rate constant of $2.75 \times 10^{-2} \mathrm{~s}^{-1}$ at $20^{\circ} \mathrm{C}$. What is the valu of (k) at $60^{\circ} \mathrm{C}$ if a) $E_{a}=75.5 \mathrm{KJ} / \mathrm{mol}$ and b) $E_{a}=125 \mathrm{KJ} / \mathrm{mol}$.

Answer:
a) $\ln \mathrm{k}_{1} / \ln \mathrm{k}_{2}=\mathrm{E}_{\mathrm{a}} / \mathrm{R}\left(1 / \mathrm{T}_{2}-1 / \mathrm{T}_{1}\right)$

$$
\begin{aligned}
& \ln k_{1} /\left(2.75 \times 10^{-2}\right)=(75.5 \times 1000 / 8.314) \times(1 / 293-1 / 333)=3.723 \\
& k_{1} / 2.75 \times 10^{-2}=e^{3.723}=41.397 \\
& k_{1}=1.14 \mathrm{~s}^{-1}
\end{aligned}
$$

b) $\quad \ln \mathrm{k}_{1} /\left(2.75 \times 10^{-2}\right)=(125 \times 1000 / 8.314) \times(1 / 293-1 / 333)$

$$
\mathrm{k}_{1}=13 \mathrm{~s}^{-1}
$$

14.59

The activation energy of a certain is $65.7 \mathrm{KJ} / \mathrm{mol}$. How many times faster will the reaction occur at $50^{\circ} \mathrm{C}$ than $0^{\circ} \mathrm{C}$?

Answer:

$$
\begin{aligned}
& f=e^{-E a / R T} \\
& - \text { Ea } / R T=-(65.7 \times 1000 \mathrm{~J} / \mathrm{mol}) /(8.314 \mathrm{~J} / \mathrm{mol}-\mathrm{K})(273 \mathrm{~K})=-28.946 \\
& f=\mathrm{e}^{-28.946}=2.684 \times 10^{-13} \\
& -\quad \mathrm{Ea} / \mathrm{RT}=-(65.7 \times 1000 \mathrm{~J} / \mathrm{mol}) /(8.314 \mathrm{~J} / \mathrm{mol}-\mathrm{K})(323 \mathrm{~K})=-24.465 \\
& \mathrm{f}=\mathrm{e}^{-24.465}=2.37 \times 10^{-11} \\
& \left(2.37 \times 10^{-11}\right) /\left(2.684 \times 10^{-13}\right)=0.883 \times 10^{2}=88
\end{aligned}
$$

The reaction will occur 88 time faster at $50^{\circ} \mathrm{C}$, assuming equal initial concentrations.

14.63

What is molecularity of each of the following elementary reaction? Write the law for each.
a) $\mathrm{Cl}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{Cl}_{(\mathrm{g})}$
b) $\mathrm{OCl}^{-}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})} \rightarrow \mathrm{HOCl}_{\text {aq }}+\mathrm{OH}_{\text {aq }}^{-}$
c) $\mathrm{NO}_{(\mathrm{g})}+\mathrm{Cl}_{2(\mathrm{~g})} \rightarrow \mathrm{NOCl}_{2(\mathrm{~g})}$

Answer:
a) unimolecular $R=k\left[\mathrm{Cl}_{2}\right]$
b) bimolecular $\mathrm{R}=\mathrm{k}\left[\mathrm{OCl}^{-}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]$
c) bimolecular $\mathrm{R}=\mathrm{k}[\mathrm{NO}]\left[\mathrm{Cl}_{2}\right]$

14.67

The following mechanism has been proposed for the gas-phase reaction of H_{2} with ICl .
$\mathrm{H}_{2(\mathrm{~g})}+\mathrm{ICl}_{(\mathrm{g})} \rightarrow \mathrm{HI}_{(\mathrm{g})}+\mathrm{HCl}_{(\mathrm{g})}$
$\mathrm{HI}_{(\mathrm{g})}+\mathrm{ICl}_{(\mathrm{g})} \rightarrow \mathrm{I}_{2(\mathrm{~g})}+\mathrm{HCl}_{(\mathrm{g})}$
a) Write the balance equation for the overall reaction.
b) Identify any intermediate in the mechanism.
c) Write rate laws for each elementary reaction in the mechanism.
d) If the first step is slow and the second one is fast, what rate law do you expect to be observed for the overall reaction?

Answer:
a) $\mathrm{H}_{2(\mathrm{~g})}+2 \mathrm{ICl}_{(\mathrm{g})} \rightarrow \mathrm{I}_{2(\mathrm{~g})}+2 \mathrm{HCl}_{(\mathrm{g})}$
b) HI is the intermediate.
c) first step : rate $=\mathrm{k}_{1}\left[\mathrm{H}_{2}\right][\mathrm{ICl}]$, second step : rate $=\mathrm{k}_{2}[\mathrm{HI}][\mathrm{ICI}]$
d) If the first step is slow, the rate is $=k\left[\mathrm{H}_{2}\right][\mathrm{ICl}]$.

14.81

The activation energy of uncatalyzed reaction is $95 \mathrm{KJ} / \mathrm{mol}$. The addition of a catalyst lowers the Activation energy to $55 \mathrm{KJ} / \mathrm{mol}$. Assuming that the collision factor remains the same, by what factor Will the catalyst increase the rate of the reaction \quad a) $25^{\circ} \mathrm{C}$ and \quad b) $125^{\circ} \mathrm{C}$?

Answer:
a) at $25^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \mathrm{k}_{1}=\mathrm{A} \mathrm{e}^{-\mathrm{Ea} / \mathrm{RT}}-\mathrm{Ea} / \mathrm{RT}=(-95000 \mathrm{~J} / \mathrm{mol}) /(8.314 \mathrm{Jlmol}-\mathrm{K})(298 \mathrm{~K})=-38.344 \\
& \mathrm{k}_{1}=\mathrm{A}^{-38.344}=\mathrm{A} \times 2.225 \times 10^{-17} \\
& \mathrm{k}_{2}=\mathrm{A} \mathrm{e} \\
& \mathrm{k}_{2}=\mathrm{Ea} / \mathrm{RT} \mathrm{e}^{-22.199}-\mathrm{Ea} / \mathrm{RT}=(-55000 \mathrm{~J} / \mathrm{mol}) /(8.314 \mathrm{~J} / \mathrm{mol}-\mathrm{K})(298 \mathrm{~K})=-22.199 \\
& \mathrm{k}_{2} / \mathrm{k}_{1}=\left(\mathrm{A} \times 2.286 \times 10^{-10}\right. \\
& \left.\mathrm{A} \times 286 \times 10^{-10}\right) /\left(\mathrm{A} \times 2.225 \times 10^{-17}\right)=1.03 \times 10^{7}
\end{aligned}
$$

The analyzed reaction is approximately $10,000,000$ times faster at $25^{\circ} \mathrm{C}$.
b) at $125^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \mathrm{k}_{1}=\mathrm{A} \mathrm{e}^{-\mathrm{Ea} / \mathrm{RT}}-\mathrm{Ea} / \mathrm{RT}=(-95000 \mathrm{~J}) /(8.314 \mathrm{~J} / \mathrm{mol}-\mathrm{K})(398 \mathrm{~K})=-28.71 \\
& \mathrm{k}_{1}=\mathrm{A} \mathrm{e}^{-28.71}=\mathrm{A} \times 3.4 \times 10^{-13} \\
& \mathrm{k}_{2}=\mathrm{A} \mathrm{e}^{-\mathrm{Ea} / \mathrm{RT}} \quad-\mathrm{Ea} / \mathrm{RT}=(-55000 \mathrm{~J}) /(8.314 \mathrm{~J} / \mathrm{mol}-\mathrm{K})(398 \mathrm{~K})=-16.6215 \\
& \mathrm{k}_{2}=\mathrm{A} \mathrm{e}^{-16.6215} \quad=\mathrm{A} \times 6.045 \times 10^{-8} \\
& \mathrm{k}_{2} / \mathrm{k}_{1}=\left(\mathrm{A} \times 6.045 \times 10^{-8}\right) /\left(\mathrm{A} \times 3.4 \times 10^{-13}\right)=1.8 \times 10^{5}
\end{aligned}
$$

The catalyst reaction is 180,000 time faster at $125^{\circ} \mathrm{C}$.

Prepared by Dr. nabil nassory

