Chapter 16 exercise

Q1. Practice exercise page 671

Write the formula for the conjugate acid of the following, HSO_3^- , F^- , PO_4^{-3-} and CO.

Answer:

$$\begin{split} HSO_{3}^{-} &+ H^{+} &\rightarrow H_{2}SO_{4} \\ F^{-} &+ H^{+} &\rightarrow HF \\ PO_{4}^{3-} &+ H^{+} &\rightarrow HPO_{4}^{2-} \\ CO &+ H^{+} &\rightarrow HCO^{+} \end{split}$$

Q2. Practice exercise page 671

When lithium oxide (Li_2O) is dissolved in water, the solution turns basic from the reaction of oxide ion (O^{2^-}) with water. Write the reaction that occurs, and identify the conjugate acid – base pair.

<u>Answer</u>:

Q3. Practice exercise page 673

For the following reactions, use figure 16.4 to predict whether the equilibrium lies predominantly

to the left or to the right.

- a) $HPO_4^{2^-}(aq) + H_2O_{(I)} \leftrightarrow H_2PO_4^{-}(aq) + OH_{(aq)}^{-}$
- b) $NH_4^{+}_{(aq)} + OH_{(aq)}^{-} \leftrightarrow NH_{3(aq)} + H_2O_{(I)}$

Answer:

a) OH^{-} is in right column (strong base) than H_2O , H_2O is a conjugate weak acid . $HPO_4^{2^{-}}$

 HPO_4^{2-} is acid more than $H_2PO_4^{--}$, $H_2PO_4^{--}$ is a weak base .

 OH^{-} more strong base than $H_2PO_4^{-}$, the reaction is shift to the left.

b) OH^- is a strong base than H_2O , H_2O is conjugate weak acid. OH^- strong base than NH_4^+ , the reaction shift to the right.

Q4. Practice exercise page 675

Indicate whether solutions with each of the following in concentrations are neutral, acidic or basic.

a) $[H^+] = 4 \times 10^{-9} \text{ M}, \text{ b}) [OH^-] = 1 \times 10^{-7} \text{ M} \text{ c}) [OH^-] = 7 \times 10^{-13} \text{ M}$

Answer:

- a) {H⁺] [OH⁻] = 1.0 x 10⁻¹⁴ [OH⁻] = (1.0 x 10⁻¹⁴) / (4 x 10⁻⁹) = 0.25 x 10⁻⁵ M
 [OH⁻] more concentrated than [H⁺], the solution is acidic.
 b) [OH⁻] = 1 x 10⁻⁷ [H⁺] = 1 x 10⁻⁷
- c) $[H^+] [OH^-] = 1.0 \times 10^{-14}$ $[H^+] = (1 \times 10^{-14}) / (7 \times 10^{-13}) = 0.143 \times 10^{-1} M$ more acidic

Q5. Practice exercise page 675

Calculate the concentration of OH⁻ in solution in which

a) $[H^+] = 2 \times 10^{-6} M$ b) $[H^+] = [OH^+]$ c) $[H^+] = 100 \times [OH^+]$

<u>Answer</u>:

- a) $[OH^+] = (1.0 \times 10^{-14}) / (2 \times 10^{-6}) = 0.5 \times 10^{-8} M = 5 \times 10^{-9} M$
- b) $[H^+] [OH^-] = 1.0 \times 10^{-14}$ $(x)(x) = 1.0 \times 10^{-14} \quad x^2 = 1.0 \times 10^{-14} \quad [OH^-] = 1.0 \times 10^{-7}$ c) $[OH^-] = (1.0 \times 10^{-14}) (100 \times [OH^-]) , \quad [OH^-]^2 = 1 \times 10^{-6}$ $[OH^-] = 1.0 \times 10^{-8} M$

Q6. Practice exercise page 677

A solution formed by dissolving an anti-acid tablet has a pH of 9.18. Calculate $[H^{\dagger}]$.

<u>Answer</u>:

PH =
$$-\log [H^+] = 9.18$$

Log $[H^+] = -9.18$
 $[H^+] = antilog (-9.18) = 10^{-9.18} = 6.6 \times 10^{-10} M$

Q7. Practice exercise 680

An aqueous solution of HNO_3 has a pH of 2.34. What is the concentration of the acid? Answer:

HNO₃ → H⁺ + NO₃⁻ pH = $-\log [H^+] = 2.34$ [H⁺] $10^{-2.34} = 4.57 \times 10^{-3} \text{ M}$ concentration of HNO₃ is $4.57 \times 10^{-3} \text{ M}$

Q8. Practice exercise page 680

What is the concentration of a solution of

a) KOH for which pH is 11.89 b) $Ca(OH)_2$ for which the pH is 11.68.

Answer:

a)
$$\text{KOH} \rightarrow \text{K}^{+} + \text{OH}^{-}$$

 $\text{pH} = -\log [\text{H}^{+}] = 11.89$
 $[\text{H}^{+}] = 10^{-11.89} = 1.29 \times 10^{-12} \text{ M}$
 $[\text{OH}^{-}] = (1.0 \times 10^{-14}) / (1.29 \times 10^{-12}) = 0.775 \times 10^{-2} \text{ M} = 7.8 \times 10^{-3} \text{ M}$
b) $\text{Ca}(\text{OH})_2 \rightarrow \text{Ca}^{2+} + 2\text{OH}^{-}$

pH =
$$-\log [H^+] = 11.68$$
 [H⁺] = $10^{-11.68} = 2.089 \times 10^{-12} M$
[H⁺] [OH⁻] = 1.0×10^{-14}
[OH⁻] = $(1.0 \times 10^{-14}) / (2.089 \times 10^{-12}) = 0.4786 \times 10^{-2} M$
for [OH⁻]² = $2 \times 0.4786 \times 10^{-2} = 2.4 \times 10^{-3} M$

Q9. Practice exercise page 683

Naicin, one of the B- vitamins, a 0.020 M solution of niacin has a pH of 3.26. What is the acid – constant -dissociation constant , Ka for niacin?

pH =
$$-\log [H^+] = 3.26$$

[H⁺] = $10^{-3.26} = 5.495 \times 10^{-4} M$

	<u>Niacin</u> →	<u>H</u> + +	<u>niacin</u>
initial	0.020 M	0 M	0 M
change	- 5.5 x 10 ⁻⁴ M	+ 5.5 x 10 ⁻⁴ M	+ 5.5 x 10 ⁻⁴ M
equilibrium	(0.02 – 5.5 x 10 ⁻⁴)	5.5 x 10 ⁻⁴ M	5.5 x 10 ⁻⁴ M
Ka = [H ⁺] [niaci	n ⁻]/[niacin] = (5.5 >	(10 ⁻⁴) ² / (0.02 – 5	$.5 \times 10^{-4}) = 1.5 \times 10^{-5}$

Q10. Practice exercise page 684

A 0.020 solution of niacin has pH of 3.26. Calculate the percent ionization of the niacin/

Answer:

pH = $-\log [H^+]$ = 3.26 [H⁺] = $10^{-3.26}$ = 5.4954 x 10^{-4} M Percent ionization = [H⁺] _{equilibrium} / [niacin] = (5.4954 x 10^{-4})(100) / 0.02 = 2.7%

Q11. Practice exercise page 686

The Ka for niacin is 1.5×10^{-5} . What is the ph of 0.010 M solution of niacin?

Answer:

Niacin \leftrightarrow	H^+ + niacin ⁻					
	<u>Niacin</u>	\rightarrow	<u>H</u> ⁺	+	<u>niacin⁻</u>	
initial	0.010 M		0 m		0 M	
change	- X M		+ X M		+ X M	
equilibrium	0.01 – X		Х		Х	
Ka = (X)(X)/		0.01	- X	= 0.01		
X^2 / 0.01 = 1.5 x 10 ⁻⁵		X =	= [H⁺] =	= 1.2	2 x 10 ⁻³ m	
pH = 3.41						

Q12. Practice exercise page 690

- a) Calculate the pH of a 0.020 M solution of oxalic acid ($H_2C_2O_4$) Ka1 = 5.0 x 10⁻⁵, Ka2 = 6.4 x 10⁻⁵
- b) Calculate the concentration of oxalic ion, $C_2O_4^{2-}$ in the solution.

Answer:

a)	$\underline{H_2C_2O_4}$	\leftrightarrow	<u>HC₂O₄-</u>	+	<u>H</u> ⁺	
initial	0.020 M		0 M		0 M	
change	- X M		+ X M		+ X N	1
equilibrium	0.020 – X	ſ	ХМ		ХM	
(X)(X) / 0.02 –	X = 5.9 x 1	0 ⁻²				
X ² + 5.9 x 1	0 ⁻² X - 0.118	3 x 10 ⁻¹	$^{2} = 0$			
X = (- 5.9 x 1	0 ⁻²) ± [√ (5.9	x 10 ⁻²) ² - 4 (- (0.11	l8 x 10) ⁻²)] / 2
X = 0.0158	pH = - log (0.015	8)			
pH = 1.8						
b)	<u>HC₂O₄</u>	\leftrightarrow	<u>H</u>	+	+	<u>C₂O₄ -2</u>
initial	0.0158 N	1	0.015	8 M	l	0 M
change	- Y		+ Y N	Л		+ Y M
equilibrium	0.0158 -	·γ	0.015	58 +	Y	YM
(Y) (0.0158 ·	+ Y) / (0.0158	3 – Y)	= 6.4 x	10 ⁻	⁵ (Y	is very small can be neglected)
Y * 0.0158	/ 0.0158 =	5.4 x 1	L0 ⁻⁵	Y =	[C ₂ O	$_{4}^{2-}$] = 6.4 xc 10 ⁻⁵

Q13. Practice exercise page 693

A solution of NH_3 in water has a pH = 11.17. What is the molarity of the solution?

$NH_3 + H_2C$	$0 \leftrightarrow \mathrm{NH_4}^+$	+ OH ⁻			
POH = 14 - pl	H 14.00 – 11.	.17 = 2	.83		
$[OH^{-}] = 10^{-2.83}$	$3 = 1.48 \times 10^{-1}$	³ M			
	<u>NH</u> 3 +	H ₂ O	\leftrightarrow	<u>NH4</u> [±] +	<u>OH</u>
initial	х			0 M	0 M
change	- 1.48 x 10 ⁻³			+ 1.48 x 10 ⁻³	+ 1.48 x 10 ⁻³ M
equilibrium	X – 1.48 x 10 ⁻³	ł		1.48 x 10 ⁻³	1.48 x 10 ⁻³ M

Kb =
$$[NH_4] [OH^-] / [NH_3] = 1.8 \times 10^{-5} = (1.48 \times 10^{-3})^2 / (X - 1.48 \times 10^{-3})^2$$

X = $[(2.19 \times 10^{-6}) + (2.664 \times 10^{-8})] / (1.8 \times 10^{-5}) = 0.123 \text{ M}$

Q14. Practice exercise page 695

a) Which of the following anions has the largest base dissociation constant NO_2^{-} , PO_4^{-3-} , N_3^{-1}

b) The base quinolone, its conjugate is pKa = 4.9. What is the base-dissociation constant for quinolone.

Answer:

- a) NO_2 is a conjugate base for the acid HNO_2 Ka = 4.5×10^{-4}
 - PO_4^{3-} is a conjugate base for H_3PO_4 has three Ka 7.5×10^{-3} , 6.2×10^{-8} and 4.2×10^{-13}
 - N_3 is a conjugate base for the acid Ka = 1.9×10^{-5}

Kb = $(1.0 \times 10^{-14}) (4.5 \times 10^{-4}) = 0.22 \times 10^{-10}$ for NO₂⁻¹⁰

Kb =
$$(1.0 \times 10^{-14}) (4.2 \times 10^{-13}) = 0.24 \times 10^{-1}$$
 for PO₄⁻³

Kb =
$$(1.0 \times 10^{-14}) (1.9 \times 10^{-5}) = 0.53 \times 10^{-9}$$
 for N³⁻

Largest base dissociation constant is PO₄³⁻

b) pKa + pKb = pKw

$$4.90 + pKb = 14.00$$

pKb = $-\log Kb = 9.1$
Kb = $10^{-9.1} = 7.9 \times 10^{-10}$

Q15. Practice exercise page 698

In each of the following, indicate which salt in each of the following pair will form the more acidic (or more basic).

(a) NaNO₃ or Fe(NO₃)₃ (b) KBr or KBrO (c) CH_3NH_3CI or $BaCl_2$ (d) NH_4NO_2 or NH_4NO_3

Answer:

a) $NaNO_3 \leftrightarrow Na^+ + NO_3^-$

 Na^+ ion from group 1A has no effect on pH

NO₃⁻ ion is the conjugate base of strong acid HNO₃ has no effect on pH

The solution is neutral

 ${\rm Fe}^{3*}\,$ is not from group 1A or 2A , decrease the pH

 NO_3^- ion is the conjugate base of strong acid HNO_3 has no effect on pH

The solution is acidic

Fe(NO₃)₃ more acidic than NaNO₃

b) K^{+} ion from group 1A has no effect on pH

Br⁻ is a conjugate base of strong acid HBr it has no influence on pH

KBr form a neutral solution

KBrO, BrO⁻ is a conjugate base for a weak acid HBrO

 $BrO^{-} + H_2O \leftrightarrow HBrO + OH^{-}$ the solution is basic

KBr is more acidic than KBrO

Exercises page 710

<u>16.15</u>

- a) what is the difference between the Arrhenius and Bronsted-Lowry definition of an acid?
- b) $NH_{3(g)}$ and $HCI_{(g)}$ react to form $NH_4CI_{(s)}$ (figure 16.3) which substance is the Bronsted-Lowry acid in this reaction? Which is the Bronsted-Lowry base?

Answer:

Arrhenius base is added to water leads to an increase in the concentration of OH⁻, while
 Arrhenius acid in water an increase in the concentration of H⁺.

Bronsted – Lowry base is accept a proton from H_2O and the acid it donate a proton from H_2O .

b) $NH_3 + HCI \rightarrow NH_4CI$

HCl is the Bronsted – Lowry acid and NH₃ is the Bronsted – Lowry base

<u>16.17</u>

a) Give the conjugate base of the following Bronsted – Lowry acids (i) HIO_3 (ii) NH_4^+

b) Give the conjugate acid of the following base (i) O^{2-} (ii) $H_2PO_4^{-}$

<u>Answer</u>

- a) i) $HIO_3 \rightarrow conjugate base is IO_3^{-1}$
 - ii) $NH_4^+ \rightarrow conjugate base is NH_3$

- b) i) $O^{2-} \rightarrow conjugate acid is OH^{-}$
 - ii) $H_2PO_4^- \rightarrow \text{conjugate acid is } H_3PO_4$

<u>16.19</u>

Designate the Bronsted – Lowry acid and Bronsted – Lowry base on the left side of each of the following equations, and also designate the conjugate acid and conjugate base on the right side.

a) $NH_4^+_{(aq)} + CN_{(aq)}^- \leftrightarrow HCN_{(aq)} + NH_{3(aq)}$ b) $(CH_3)_3N_{(aq)} + H_2O_{(I)} \leftrightarrow (CH_3)NH_{(aq)}^+ + OH_{(aq)}^$ c) $HCHO_{2(aq)} + PO_4^{3-} \leftrightarrow CHO_2^-_{(aq)} + HPO_4^{2-}_{(aq)}$

Answer:

a)	${\sf NH_4^+}_{(aq)}$ +	$CN^{-}_{(aq)} \leftrightarrow H$	HCN _(aq) +	$\rm NH_{3(aq)}$
	acid	base c	onjugate acid	conjugate base
b)	(CH ₃) ₃ N _(aq)	+ $H_2O_{(I)} \leftrightarrow$	(CH ₃)NH ⁺ _{)aq)} +	OH ⁻ (aq)
	base	acid	conjugate acid	conjugate base
c)	HCHO _{2 (aq)} +	$- PO_4^{3-} \leftrightarrow$	CHO ₂ (aq) +	HPO4 ²⁻ (aq)
	acid	base	conjugate base	conjugate acid

<u>16.21</u>

- a) The hydrogen oxalate ion $(HC_2O_4^-)$ is amphiprotic. Write a balance chemical equation showing how it acts as an acid toward water and another equation showing how it acts as a base towered water.
- b) What is the conjugate acid of $HC_2O_4^-$? what is the conjugate base.

- a) $HC_2O_4^- + H_2O \iff C_2O_4^{2-} + H_3O^+$ (behave as acid in water) $HC_2O_4^- + H_2O \iff H_2C_2O_4 + OH^-$ (behave as base in water)
- b) $H_2C_2O_4$ is a conjugate acid of HC_2O_4

 $C_2O_4^{2-}$ is a conjugate base of $HC_2O_4^{-}$

<u>16.27</u>

Predict the products of the following acid – base reactions, and predict whether the the equilibrium lies to the left or to the right of the equations.

- a) $O^{2-}_{(aq)} + H_2O_{(I)} \leftrightarrow$
- b) $CH_3COOH_{(aq)} + HS^- \leftrightarrow$
- c) $NO_2^- + H_2O_{(I)} \leftrightarrow$

Answer:

- a) $O^{2^{-}} + H_2O \iff OH^{-} + OH^{-}$ base acid conjugate acid conjugate base
- b) $CH_3COOH_{(aq)} + HS^- \leftrightarrow H_2S + CH_3COO^$ acid base conjugate acid conjugate base
- c) NO_2^- + $H_2O_{(I)}$ \leftrightarrow HNO_2 + OH^-

The equilibrium to the left

<u>16.31</u>

Calculate [H⁺] for such of the following solutions, and indicate whether the solution is acidic,

basic or neutral.

A) $[OH^{-}] = 0.00045 \text{ M}$ b) $[OH^{-}] 8.8 \times 10^{-9} \text{ M}$

c) a solution which $[OH^{-}]$ is 100 times greater then $[H^{+}]$

c) $[H^+] \times 100 [H^+] = 10^{-14}$ $[H^+] = 10^{-14} / 100 = 10^{-16}$ $[H^+] = 10^{-8} \text{ pH} = 8 \text{ the solution is basic}$

<u>16.33</u>

At the freezing point of water $0^{\circ}C$, $K_w = 1.2 \times 10^{-15}$. Calculate $[H^+]$ and $[OH^-]$ for neutral solution of this temperature.

Answer:

$$[OH^{-}][H^{+}] = 1.2 \times 10^{-15}$$
 $X^{2} = 1.2 \times 10^{-15}$
 $[OH^{-}] = [H^{+}] = 3.5 \times 10^{-6} M$

<u>16.35</u>

By what factor does $[H^+]$ change for pH change of

a) 2.00 units b) 0.50 units

Answer:

pH =
$$-\log [H^+]$$
 $[H^+]$ = $10^{-2.00}$ = 0.01 = 1/100
 $[H^+]$ = $10^{-0.50}$ = 0.316 = 1/0.316 = 3.2

16.39

Complete the following table by calculating the missing entries and indicating whether the solution is acidic or basic

<u>H</u> ⁺	<u>OH</u>	<u>рН</u>	<u>рОН</u>	acidic or basic
7.5 x 10 ⁻³ M				
	3.6 x 10 ⁻¹⁰ M			
		8.25		
			5.70	

Answer:

[H⁺][OH⁻] 1.0 x 10⁻¹⁴

$[OH^{-}] = (1.0 \times 10^{-14}) / (7.5 \times 10^{-3}) = 1.3 \times 10^{-12} M$						
$pOH = -\log(1.3 \times 10^{-12}) = 11.87$						
pH = $14 - 11.87$ = 2.13 the solution is acidic						
<u>H</u> ⁺	<u>OH</u>	<u>рН</u>	<u>pOH</u>	acidic or basic		
7.5 x 10 ⁻³ M	1.3 x 10 ⁻¹² M	2.13	11.87	acidic		
2.8 x 10⁻⁵ M	3.6 x 10 ⁻¹⁰ M	4.56	9.44	acidic		
5.6 x 10 ⁻⁹ M	1.8 x 10 ⁻⁶ M	8.25	5.75	basic		
5.0 x 10 ⁻⁹ M	2.0 x 10 ⁻⁶ M	8.30	5.70	basic		

<u>16.41</u>

The average pH of normal arterial blood is 7.40. At normal body temperature is 37° C, K_w =

 $2.4 \times 10^{\text{-14}}.$ Calculate [H $^{\text{+}}$], and pOH for the blood at this temperature.

<u>Answer</u>:

PH = $-\log [H^+] = 7.40$ $[H^+] = 3.98 \times 10^{-8} M = 4.00 \times 10^{-8} M$ $[H^+] [OH^-] = 2.4 \times 10^{-14} [OH^-] = 0.6 \times 10^{-6} M$ pOH = $-\log (0.6 \times 10^{-6}) = 6.22$

<u> 16.45</u>

Calculate the pH of the following strong acid solutions.

a) 8.5 x 10⁻³ M HBr.

b) 1.52 g of HNO_3 in 575 mL of solution.

c) 5.00 mL of 0.250 M HClO₄ diluted to 50.0 mL.

d) a solution formed by mixing 10.0 mL of 0.100 M HBr with 20.0 mL of 0.2 M HCl.

Answer:

a) HBr \rightarrow H⁺ + Br⁻ 8.5 x 10⁻³ M 8.5 x 10⁻³ M 8.5 x 10⁻³ M $pH = -\log(8.5 \times 10^{-3}) = 2.07$

b) mole of HNO₃ = (1.52 g) /(63 g/mol) = 0.024 mol molarity of HNO₃ = (0.024 mol HNO₃)(1000 mL / 575 mL) = 0.042 M [H⁺] pH = -log [H⁺] = -log (0.042) = 1.38
c) N1 x V1 = N2 x V2
0.250 M x 5.00 mL = N2 x 50.0 mL N2 = 0.0250 M molarity of HClO₄ = molarity of [H⁺] pH = -log [H⁺] = -log (0.0250) = 1.60
d) 10 mL + 20 mL = 30 mL volume of solution N1 x V1 = N2 x V2
0.100 M x 10 mL = N2 x 30 mL N2 = 0.033 M of [HBr] = [H⁺] N1 x V1 = N2 x V2
0.2 M x 20 mL = N2 x 30 mL N2 = 0.133 M of HCl = [H⁺]
0.033 M [H⁺] from HBr + 0.133 M [H⁺] from HCl = 0.166 M pH = -log (0.166) = 0.778

<u>16.47</u>

Calculate [OH⁻] and pH for

- a) 1.5 x 10⁻³ M Sr(OH)₂
- b) 2.250 g of LiOH in 250.0 mL of solution
- c) 1.00 mL of 0.175 M NaOH diluted to 2.000 L

d) a solution formed by adding 5.00 mL of 0.105 M KOH to 15.0 mL of 9.5×10^{-2} M Ca(OH)₂

a)
$$Sr(OH)_2 \rightarrow Sr^{2+} + 2OH^{-1}$$

 $[OH^{-1}] = 2 \times 1.5 \times 10^{-3} = 3.0 \times 10^{-3} M^{-1}$
 $pOH = -\log (3.0 \times 10^{-3}) = 2.523$

pH = 14-2.523 = 11.48

b) mole of LiOH = 2.250/24 = 0.094

[LiOH] M = (0.094 mol LiOH) (1000 mL /250 mL) = 0.375 M of LiOH

 $LiOH \rightarrow Li^{+} + OH^{-}$

0.375 0.375

 $pOH = -\log [OH^{-}] = -\log (0.375) = 0.426$

$$pH = 14 - 0.426 = 13.57$$

c) $N1 \times V1 = N2 \times V2$

 $0.175 \times 1.0 \text{ mL} = \text{N2} \times 2000 \text{ mL}$ N2 = 8.75 x 10⁻⁵ M NaOH pOH = $-\log [\text{OH}^-] = -\log (8.75 \times 10^{-5}) = 4.058$ pH = 14 - 4.058 = 9.942

d) total volume of solution 5.0 mL + 15 mL = 20 mL

for KOH N1 x V1 = N2 x V2 0.105 M x 5.0 mL = N2 x 20.0 mL N2 = 0.02625 MKOH for Ca(OH)₂ 9.5 x 10⁻² M x 15 mL = N2 x 20 mL N2 = 0.07125 M of Ca(OH)₂ = 0.07125 M [OH⁻] total concentrations of [OH⁻] = 0.02625 + 2x 0.07125 = 0.16875 M = 0.17 MpOH = $-\log [\text{OH}^{-}] = -\log (0.17) = 0.773$ pH = 14 - 0.773 = 13.23

<u> 16.53</u>

Lactic acid (CH₃CH(OH)COOH) has one acidic hydrogen. A 0.10 M solution lactic acid has pH = 2.44.

Calculate Ka.

Answer:

 $CH_3CH(OH)COOH \leftrightarrow H^+ + CH_3CH(OH)COO^-$

 $pH = -\log [H^+] = 2.44$

$$[H^{+}] = 0.00363 M$$

$$Ka = [CH_{3}CH(OH)COO^{-}] [H^{+}] / [CH_{3}CH(OH)COO] = (0.000363)(0.00363) / 0.1$$

$$Ka = 1.32 \times 10^{-4} = 1.4 \times 10^{-4}$$

<u>16.55</u>

A 0.10 M solution of chloroacetic acid (CICH $_2$ COOH) is 11.0% ionized. Using this information,

calculate [CICH₂COO⁻], [H⁺], and [CICH₂COOH] and Ka for chloroacetic acid.

Answer:

Ionizes chloroacetic acid = 0.10 M x 11/100 = 0.011 M

Remain chloroacetic acid = 0.10 - 0.011 = 0.089 M

	CICH ₂ COOH (aq)	\leftrightarrow CICH ₂ COO ⁻ _(aq)	+ $H^+_{(aq)}$
initial	0.011 M	0 M	0 M
change	- 0.011 M	+ 0.011 M	+ 0.011 M
equilibriu	m (0.10 – 0.011)	0.011 M	0.011 M
Ka = (0.0	011) (0.011) / (0.089	$(9) = 1.4 \times 10^{-3}$	

<u> 16.57</u>

A particular sample of vinegar has a pH = 2.9. If acetic acid is the only acid that vinegar contains

(Ka = 1.8×10^{-5}), calculate the concentration of acetic acid in the vinegar.

Answer:

- $pH log [H^+] = 2.90$
- $[H^+] = 0.00126 =$ the concentration of vinegar

 $CH_3COOH \leftrightarrow CH_3COO^- + H^+$

Ka = $[CH_3COO^{-/}][H^{-}] / [CH_3COOH] = 1.8 \times 10^{-5}$

 $(0.00126) (0.00126) / [CH_3COOH] = 1.8 \times 10^{-5}$

 $[CH_{3}COOH] = 0.0882 M$

<u>16.63</u>

Saccharin, a sugar substitute, is a weak acid with pKa = 2.32 at 25°C. It ionizes in aqueous

solution as follows:

 $HNC_7H_4SO_3_{(aq)} \leftrightarrow H^+_{(aq)} + NC_7H_4SO_3^-_{(aq)}$

What is the pH of a 0.10 M solution of this substance?

Answer:

$$pKa = -\log Ka = 2.32$$

$$Ka = 4.79 \times 10^{-3} = [H^{+}] [NC_{7}H_{4}SO_{3}^{-}] / [HNC_{7}H_{4}SO_{3}^{-}]$$

$$HNC_{7}H_{4}SO_{3}(aq) \leftrightarrow H^{+}(aq) + NC_{7}H_{4}SO_{3}^{-}(aq)$$
initial
$$0.10 \text{ M} \text{ O M} \text{ O M}$$
change
$$-X \text{ M} + X \text{ M} + X \text{ M}$$
equilibrium
$$(0.10 - X) \text{ M} X \text{ M} X \text{ M}$$

$$X^{2} / (0.10 - X) = 4.79 \times 10^{-4}$$

$$X = [H^{+}] = 2.23 \times 10^{-2} \text{ M}$$

$$pH = -\log (2.23 \times 10^{-2}) = 1.652 = 1.7$$

<u>16.65</u>

Calculate the percent ionization of hydrazoic acid (HN₃) in solutions each of the following

concentrations (Ka = 1.9×10^{-5})

a) 0.400 M b) 0.100 M c) 0.0400 M

Answer:

a) percent ionization = $[H^+]_{equ}$ / $[HA]_{initial}$ x 100% $HN_3 \leftrightarrow H^+ + N_3^ Ka = [H^+] [N_3^-] / [HN_3] = 1.9 \times 10^{-5}$ X = $[H^+] = [N_3^-]$ $X^2 / (0.4 - X) = 1.9 \times 10^{-5}$ X = 2.77 x 10^{-3} M = $[H^+]$ Percent ionization = $(2.77 \times 10^{-3}) / (0.4) \times 100 = 0.69\%$

b)
$$[H^+][N_3^-] / [HN_3] = 1.9 \times 10^{-3} M$$

$$X^{2} / (0.1 - X) = 1.9 \times 10^{-3} \qquad X = 1.38 \times 10^{-3} \text{ M} = [\text{H}^{+}]$$
Percent ionization = $[\text{H}^{+}]_{equ} / [\text{HA}]_{initial} \times 100 = 1.4\%$
c) $X^{2} / (0.04 - X) = 1.9 \times 10^{-5} \qquad X = 0.872 \times 10^{-3} \text{ M} = [\text{H}^{+}]$
percent ionization = $(0.872 \times 10^{-3}) / 0.04 \times 100 = 2.2\%$

<u>16.73</u>

Write the chemical equations and Kb expression for the ionization of each of the following bases in aqueous solutions.

- a) dimethyl amine (CH₃)₂NH
- b) carbonate ion CO_3^{2-}
- c) formate ion CHO₂⁻

Answer:

a)
$$(CH_3)_2NH_{(aq)} + H_2O_{(I)} \leftrightarrow (CH_3)_2NH_2^+ + OH_{(aq)}$$

 $Kb = [(CH_3)_2NH_2^+] [OH^-] / [(CH_3)_2NH]$
b) $CO_3^{2-}_{(aq)} + H_2O_{(I)} \leftrightarrow HCO_3^-_{(aq)} + OH^+_{(aq)}$
 $Kb = [HCO_3^-] [OH^-] / [CO_3^{2-}]$
c) $HCOO^-_{(aq)} + H_2O_{(I)} \leftrightarrow HCOOH_{(aq)} + OH^-_{(aq)}$
 $Kb = [HCOOH] [OH^-] / [HCOO^-]$

<u>16.83</u>

Calculate [OH⁻] and pH for each of the following solutions

Ka for HCN =
$$4.9 \times 10^{-10}$$
, Ka for $H_2CO_3 = 5.6 \times 10^{-11}$, Ka for $HNO_2 = 4.5 \times 10^{-4}$)

a) 0.10 M NaCN

- b) 0.080 M Na₂CO₃
- c) a mixture that is 0.10 M in NaNO_2 and 0.20 M in Ca(NO_2)_2

Answer:

a) NaCN \rightarrow Na⁺ + CN⁻

$$CN^{-} + H_{2}O \rightarrow HCN^{+} + OH^{-}$$

$$Kb \times Ka = Kw \qquad Kb = (1.0 \times 10^{-14}) / (4.9 \times 10^{-10}) = 0.204 \times 10^{-4}$$

$$Kb = [HCN] [OH^{-}] / [CN^{-}] = 0.204 \times 10^{-4}$$

$$CN^{-} + H_{2}O \rightarrow HCN^{+} + OH^{-}$$
initial 0.10 M 0 M 0 M
change $-X M + X M + X M$
equilibrium 0.10 $-X \qquad X M \qquad X M$

$$(X)(X) / 0.1 - X = 0.204 \times 10^{-4} \qquad X = 1.43 \times 10^{-3} M = [OH^{-}]$$

$$[OH^{-}] [H^{+}] = 1.0 \times 10^{-14} \qquad [H^{+}] = (1.0 \times 10^{-14}) / (1.43 \times 10^{-3}) = 0.7 \times 10^{-11}$$

$$pH = -\log (0.7 \times 10^{-11}) = 11.15$$

$$Na_{2}CO_{3} \rightarrow 2Na^{+} + CO_{3}^{2-}$$

$$CO_{3}^{2-} + H_{2}O \rightarrow HCO_{3}^{-} + OH^{-}$$

$$Kb = (1.0 \times 10^{-14}) / (5.6 \times 10^{-11}) = 0.18 \times 10^{-3}$$

$$Kb = [HCO_{3}^{-}] [OH^{-}] / [CO_{3}^{2-}] = 0.18 \times 10^{-3}$$

b)
$$Na_2CO_3 \rightarrow 2Na^+ + CO_3^{2^-}$$

 $CO_3^{2^-} + H_2O \rightarrow HCO_3^- + OH^-$
 $Kb = (1.0 \times 10^{-14}) / (5.6 \times 10^{-11}) = 0.18 \times 10^{-3}$
 $Kb = [HCO_3^-] [OH^-] / [CO_3^{2^-}] = 0.18 \times 10^{-3}$
 $X^2 / (0.08 - X) = 0.18 \times 10^{-3} \quad X = 3.6 \times 10^{-3} = [OH^-]$
 $[H^+] [OH^-] = 10^{-14} \quad [H^+] = (1.0 \times 10^{-14}) / (3.8 \times 10^{-3}) = 0.263 \times 10^{-11} \text{ M}$
 $pH = -\log [H^+] = -\log (0.263 \times 10^{-11}) = 11.58$
c) $NaNO_2 \rightarrow Na^+ + NO_2^-$

$$NO_2^-$$
 + $H_2O \rightarrow HNO_2$ + OH^-

<u> 16.85</u>

Predict whether aqueous solutions of the following compounds are acidic, basic or neutral

a) NH_4Br b) $FeCl_3$ c) Na_2CO_3 d) $HClO_4$ e) $NaHC_2O_4$

Answer:

a) $NH_4Br \rightarrow NH_4^+ + Br^-$

 NH_4^+ is the conjugate acid of base NH_3

Br is conjugate base of a strong acid HBr, it has no influence on pH.

The solution of the salt is acidic

b) $FeCl_3 \rightarrow Fe^{3+} + 3Cl^{-}$

Fe³⁺ is not from group 1A or group 2A, decrease the pH

Cl⁻ is the conjugate base of strong HCl, has no influence on pH

The solution of the salt is acidic

c)
$$Na_2CO_3 \rightarrow 2Na^+ + CO_3^{2^-}$$

Na⁺ is from group 1A has no effect on pH

 CO_3^{2-} is a conjugate base of weak acid H_2CO_3

The solution of the salt is basic

d)
$$KCIO_4 \rightarrow K^+ + CIO_4^-$$

K⁺ is from group 1A has no effect on pH

ClO₄⁻ is a conjugate base of the acid HClO₄ has no effect on pH

The solution of the salt is neutral

e)
$$NaHC_2O_4 \rightarrow Na^+ + HC_2O_4^-$$

Na⁺ is from group 1A has no influence on pH

 $HC_2O_4^{-}$ is a conjugate acid of a base $C_2O_4^{2-}$

The solution of the salt is acidic

<u>16.87</u>

An unknown salt is either NaF, NaCl, or NaOCl. When 0.05 mole of salt is dissolved in water to form 0.500 L of solution. The pH of solution is 8.08. What is the identity of the salt? (Kb for the $F^- = 1.5 \times 10^{-11}$, Kb for ClO⁻ = 0.334 x 10⁻⁶, Cl⁻ is from strong acid HCl)

Answer:

pH + pOH = 14 8.08 + pOH = 14 pOH = 5.92 pOH = $-\log [OH^{-}] = 5.92$ [OH⁻] = $1.2 \times 10^{-6} M$ Kb = $(X)(X) / 0.1 = (1.20 \times 10^{-6})(1.2 \times 10^{-6}) / 0.1 = 1.45 \times 10^{-11}$ Kb x Ka = 10^{-14} Ka = $(1.0 \times 10^{-14}) / (1.45 \times 10^{-11}) = 7.14 \times 10^{-3}$

Kb for the anion salt is 1.5×10^{-11} , Ka for the conjugate acid = 7.14×10^{-3} . The conjugate acid is F⁻, the salt is NaF.

Prepared by Dr. Nabil Nassory