Chapter 16 exercise

Q1. Practice exercise page 671

Write the formula for the conjugate acid of the following, $\mathrm{HSO}_{3}{ }^{-}, \mathrm{F}, \mathrm{PO}_{4}{ }^{3-}$ and CO .
Answer:

$$
\begin{aligned}
& \mathrm{HSO}_{3}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4} \\
& \mathrm{~F}+\mathrm{H}^{+} \rightarrow \mathrm{HF} \\
& \mathrm{PO}_{4}^{3-}+\mathrm{H}^{+} \rightarrow \mathrm{HPO}_{4}^{2-} \\
& \mathrm{CO}+\mathrm{H}^{+} \rightarrow \mathrm{HCO}^{+}
\end{aligned}
$$

Q2. Practice exercise page 671
When lithium oxide $\left(\mathrm{Li}_{2} \mathrm{O}\right)$ is dissolved in water, the solution turns basic from the reaction of oxide ion $\left(\mathrm{O}^{2-}\right)$ with water. Write the reaction that occurs, and identify the conjugate acid base pair.

Answer:

$$
\begin{aligned}
& \mathrm{Li}_{2} \mathrm{O}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(1)} \rightarrow \mathrm{LiOH}+\mathrm{LiOH} \\
& \mathrm{O}^{2-}{ }_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{ll})} \rightarrow \mathrm{OH}^{-}{ }_{(\mathrm{aq})}+\mathrm{OH}^{-}{ }_{(\mathrm{aq})} \\
& \text { base acid conjugate acid conjugate base }
\end{aligned}
$$

Q3. Practice exercise page 673
For the following reactions, use figure 16.4 to predict whether the equilibrium lies predominantly to the left or to the right.
a) $\mathrm{HPO}_{4}{ }^{2-}{ }_{\text {(aq) }}+\mathrm{H}_{2} \mathrm{O}_{(1)} \leftrightarrow \mathrm{H}_{2} \mathrm{PO}_{4}^{-}{ }^{-}{ }^{(\text {aq })}+\mathrm{OH}^{-}{ }_{(\text {aq })}$
b) $\mathrm{NH}_{4}^{+}{ }_{\text {(aq) }}+\mathrm{OH}^{-}{ }_{(\text {aq) }} \leftrightarrow \mathrm{NH}_{3(\text { aq })}+\mathrm{H}_{2} \mathrm{O}_{(\text {l) }}$

Answer:
a) OH^{-}is in right column (strong base) than $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O}$ is a conjugate weak acid . $\mathrm{HPO}_{4}{ }^{2-}$ $\mathrm{HPO}_{4}{ }^{2-}$ is acid more than $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}, \mathrm{H}_{2} \mathrm{PO}_{4}^{-}$is a weak base .
OH^{-}more strong base than $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$, the reaction is shift to the left.
b) OH^{-}is a strong base than $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O}$ is conjugate weak acid. OH^{-}strong base than $\mathrm{NH}_{4}{ }^{+}$, the reaction shift to the right.

Q4. Practice exercise page 675
Indicate whether solutions with each of the following in concentrations are neutral, acidic or basic.
a) $\left.\left[\mathrm{H}^{+}\right]=4 \times 10^{-9} \mathrm{M}, \mathrm{b}\right)\left[\mathrm{OH}^{-}\right]=1 \times 10^{-7} \mathrm{M}$
c) $\left[\mathrm{OH}^{-}\right]=7 \times 10^{-13} \mathrm{M}$

Answer:
a) $\left\{\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} \quad\left[\mathrm{OH}^{-}\right]=\left(1.0 \times 10^{-14}\right) /\left(4 \times 10^{-9}\right)=0.25 \times 10^{-5} \mathrm{M}$
$\left[\mathrm{OH}^{-}\right]$more concentrated than $\left[\mathrm{H}^{+}\right]$, the solution is acidic.
b) $\left[\mathrm{OH}^{-}\right]=1 \times 10^{-7} \quad\left[\mathrm{H}^{+}\right]=1 \times 10^{-7}$
c) $\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} \quad\left[\mathrm{H}^{+}\right]=\left(1 \times 10^{-14}\right) /\left(7 \times 10^{-13}\right)=0.143 \times 10^{-1} \mathrm{M}$ more acidic

Q5. Practice exercise page 675

Calculate the concentration of OH^{-}in solution in which
a) $\left[\mathrm{H}^{+}\right]=2 \times 10^{-6} \mathrm{M}$
b) $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{+}\right]$
c) $\left[\mathrm{H}^{+}\right]=100 \times\left[\mathrm{OH}^{+}\right]$

Answer:

a) $\left[\mathrm{OH}^{+}\right]=\left(1.0 \times 10^{-14}\right) /\left(2 \times 10^{-6}\right)=0.5 \times 10^{-8} \mathrm{M}=5 \times 10^{-9} \mathrm{M}$
b) $\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}$

$$
(x)(x)=1.0 \times 10^{-14} \quad x^{2}=1.0 \times 10^{-14} \quad\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-7}
$$

c) $\left[\mathrm{OH}^{-}\right]=\left(1.0 \times 10^{-14}\right)\left(100 \times\left[\mathrm{OH}^{-}\right]\right),\left[\mathrm{OH}^{-}\right]^{2}=1 \times 10^{-6}$
$\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-8} \mathrm{M}$

Q6. Practice exercise page 677

A solution formed by dissolving an anti-acid tablet has a pH of 9.18. Calculate $\left[\mathrm{H}^{+}\right]$.
Answer:

$$
\begin{aligned}
& \mathrm{PH}=-\log \left[\mathrm{H}^{+}\right]=9.18 \\
& \log \left[\mathrm{H}^{+}\right]=-9.18 \\
& {\left[\mathrm{H}^{+}\right]=\operatorname{antilog}(-9.18)=10^{-9.18}=6.6 \times 10^{-10} \mathrm{M}}
\end{aligned}
$$

Q7. Practice exercise 680

An aqueous solution of HNO_{3} has a pH of 2.34. What is the concentration of the acid?
Answer:

```
\(\mathrm{HNO}_{3} \rightarrow \mathrm{H}^{+}+\mathrm{NO}_{3}^{-}\)
\(\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=2.34\)
\(\left[\mathrm{H}^{+}\right] 10^{-2.34}=4.57 \times 10^{-3} \mathrm{M}\) concentration of \(\mathrm{HNO}_{3}\) is \(4.57 \times 10^{-3} \mathrm{M}\)
```


Q8. Practice exercise page 680

What is the concentration of a solution of
a) KOH for which pH is 11.89
b) $\mathrm{Ca}(\mathrm{OH})_{2}$ for which the pH is 11.68 .

Answer:
a) $\mathrm{KOH} \rightarrow \mathrm{K}^{+}+\mathrm{OH}^{-}$

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=11.89
$$

$$
\left[\mathrm{H}^{+}\right]=10^{-11.89}=1.29 \times 10^{-12} \mathrm{M}
$$

$$
\left[\mathrm{OH}^{-}\right]=\left(1.0 \times 10^{-14}\right) /\left(1.29 \times 10^{-12}\right)=0.775 \times 10^{-2} \mathrm{M}=7.8 \times 10^{-3} \mathrm{M}
$$

b) $\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{Ca}^{2+}+2 \mathrm{OH}^{-}$

$$
\begin{aligned}
& \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=11.68 \quad\left[\mathrm{H}^{+}\right]=10^{-11.68}=2.089 \times 10^{-12} \mathrm{M} \\
& {\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}} \\
& {\left[\mathrm{OH}^{-}\right]=\left(1.0 \times 10^{-14}\right) /\left(2.089 \times 10^{-12}\right)=0.4786 \times 10^{-2} \mathrm{M}} \\
& \text { for }\left[\mathrm{OH}^{-}\right]^{2}=2 \times 0.4786 \times 10^{-2}=2.4 \times 10^{-3} \mathrm{M}
\end{aligned}
$$

Q9. Practice exercise page 683
Naicin, one of the B- vitamins, a 0.020 M solution of niacin has a pH of 3.26 . What is the acid constant -dissociation constant , Ka for niacin?

Answer:

$$
\begin{aligned}
& \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=3.26 \\
& {\left[\mathrm{H}^{+}\right]=10^{-3.26}=5.495 \times 10^{-4} \mathrm{M}}
\end{aligned}
$$

	Niacin \rightarrow	$\underline{\mathrm{H}^{+}}+$	$\underline{\text { niacin }}$
initial	0.020 M	0 M	0 M
change	$-5.5 \times 10^{-4} \mathrm{M}$	$+5.5 \times 10^{-4} \mathrm{M}$	$+5.5 \times 10^{-4} \mathrm{M}$
equilibrium	$\left(0.02-5.5 \times 10^{-4}\right)$	$5.5 \times 10^{-4} \mathrm{M}$	$5.5 \times 10^{-4} \mathrm{M}$

Q10. Practice exercise page 684
A o. 020 solution of niacin has pH of 3.26 . Calculate the percent ionization of the niacin/
Answer:

$$
\begin{aligned}
& \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=3.26 \\
& {\left[\mathrm{H}^{+}\right]=10^{-3.26}=5.4954 \times 10^{-4} \mathrm{M}} \\
& \text { Percent ionization }=\left[\mathrm{H}^{+}\right]_{\text {equilibrium }} /[\text { niacin }]=\left(5.4954 \times 10^{-4}\right)(100) / 0.02=2.7 \%
\end{aligned}
$$

Q11. Practice exercise page 686
The Ka for niacin is 1.5×10^{-5}. What is the ph of 0.010 M solution of niacin?
Answer:

Nia	$\mathrm{H}^{+}+$niacin $^{-}$			
	Niacin	$\rightarrow \quad \underline{\mathrm{H}^{+}}$	+	niacin
initial	0.010 M	0 m		OM
change	- X M	+ XM		+ X M
equilibrium	0.01 -X	X		X
Ka $=(\mathrm{X})(\mathrm{X}) / 0.01-\mathrm{X}$		$0.01-\mathrm{X}=0.01$		
$\mathrm{X}^{2} / 0.01=1.5 \times 10^{-5}$		$\mathrm{X}=\left[\mathrm{H}^{+}\right]=1.22 \times 10^{-3} \mathrm{~m}$		
$\mathrm{pH}=3.41$				

Q12. Practice exercise page 690
a) Calculate the pH of a 0.020 M solution of oxalic acid $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right) \mathrm{Ka} 1=5.0 \times 10^{-5}, \mathrm{Ka} 2=6.4 \times 10^{-5}$
b) Calculate the concentration of oxalic ion, $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$ in the solution.

Answer:

$$
\begin{aligned}
& \text { a) } \quad \underline{\mathrm{H}}_{2} \underline{\mathrm{C}}_{2} \underline{\mathrm{O}}_{4} \quad \leftrightarrow \underline{\mathrm{HC}}_{2} \underline{\mathrm{O}}_{4}{ }^{-}+\underline{\mathrm{H}}^{+} \\
& \begin{array}{lll}
\text { initial } & 0.020 \mathrm{M} & 0 \mathrm{M} \\
\hline
\end{array} \\
& \text { change -XM }+X M+X M \\
& \begin{array}{lll}
\text { equilibrium } \quad 0.020-X \quad X M & X M
\end{array} \\
& (X)(X) / 0.02-X=5.9 \times 10^{-2} \\
& \mathrm{X}^{2}+5.9 \times 10^{-2} \mathrm{X}-0.118 \times 10^{-2}=0 \\
& X=\left(-5.9 \times 10^{-2}\right) \pm\left[V\left(5.9 \times 10^{-2}\right)^{2}-4\left(-0.118 \times 10^{-2}\right)\right] / 2 \\
& X=0.0158 \mathrm{pH}=-\log (0.0158) \\
& \mathrm{pH}=1.8 \\
& (Y)(0.0158+Y) /(0.0158-Y)=6.4 \times 10^{-5} \quad(Y \text { is very small can be neglected }) \\
& Y * 0.0158 / 0.0158=6.4 \times 10^{-5} \quad Y=\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]=6.4 \times c 10^{-5}
\end{aligned}
$$

Q13. Practice exercise page 693

A solution of NH_{3} in water has a $\mathrm{pH}=11.17$. What is the molarity of the solution?

Answer:

$$
\begin{aligned}
& \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} \\
& \mathrm{POH}=14-\mathrm{pH} \quad 14.00-11.17=2.83 \\
& {\left[\mathrm{OH}^{-}\right]=10^{-2.83}=1.48 \times 10^{-3} \mathrm{M}} \\
& \underline{N H}_{3}+\mathrm{H}_{2} \mathrm{O} \quad \leftrightarrow \quad \underline{\mathrm{NH}}_{4}^{ \pm}+\quad \underline{\mathrm{OH}}^{-} \\
& \text {initial } X \quad 0 \mathrm{M} \\
& \text { change } \quad-1.48 \times 10^{-3} \quad+1.48 \times 10^{-3}+1.48 \times 10^{-3} \mathrm{M} \\
& \text { equilibrium } \\
& X-1.48 \times 10^{-3} \\
& 1.48 \times 10^{-3} \\
& 1.48 \times 10^{-3} \mathrm{M}
\end{aligned}
$$

$\mathrm{Kb}=\left[\mathrm{NH}_{4}\right]\left[\mathrm{OH}^{-}\right] /\left[\mathrm{NH}_{3}\right]=1.8 \times 10^{-5}=\left(1.48 \times 10^{-3}\right)^{2} /\left(\mathrm{X}-1.48 \times 10^{-3}\right)$
$X=\left[\left(2.19 \times 10^{-6}\right)+\left(2.664 \times 10^{-8}\right)\right] /\left(1.8 \times 10^{-5}\right)=0.123 \mathrm{M}$

Q14. Practice exercise page 695

a) Which of the following anions has the largest base dissociation constant $\mathrm{NO}_{2}{ }^{-}, \mathrm{PO}_{4}{ }^{3-}, \mathrm{N}_{3}^{-}$
b) The base quinolone, its conjugate is $\mathrm{pKa}=4.9$. What is the base-dissociation constant for quinolone.

Answer:

a) $\mathrm{NO}_{2}{ }^{-}$is a conjugate base for the acid $\mathrm{HNO}_{2} \mathrm{Ka}=4.5 \times 10^{-4}$

$$
\begin{aligned}
& \mathrm{PO}_{4}{ }^{3-} \text { is a conjugate base for } \mathrm{H}_{3} \mathrm{PO}_{4} \text { has three } \mathrm{Ka} 7.5 \times 10^{-3}, 6.2 \times 10^{-8} \text { and } 4.2 \times 10^{-13} \\
& \mathrm{~N}_{3}{ }^{-13} \text { is a conjugate base for the acid } \mathrm{Ka}=1.9 \times 10^{-5} \\
& \mathrm{~Kb}=\left(1.0 \times 10^{-14}\right)\left(4.5 \times 10^{-4}\right)=0.22 \times 10^{-10} \text { for } \mathrm{NO}_{2}^{-} \\
& \mathrm{Kb}=\left(1.0 \times 10^{-14}\right)\left(4.2 \times 10^{-13}\right)=0.24 \times 10^{-1} \text { for } \mathrm{PO}_{4}^{3-} \\
& \mathrm{Kb}=\left(1.0 \times 10^{-14}\right)\left(1.9 \times 10^{-5}\right)=0.53 \times 10^{-9} \text { for } \mathrm{N}^{3-} \\
& \text { Largest base dissociation constant is } \mathrm{PO}_{4}^{3-}
\end{aligned}
$$

b) $\mathrm{pKa}+\mathrm{pKb}=\mathrm{pKw}$

$$
4.90+\mathrm{pKb}=14.00
$$

$$
\mathrm{pKb}=-\log \mathrm{Kb}=9.1
$$

$$
\mathrm{Kb}=10^{-9.1}=7.9 \times 10^{-10}
$$

Q15. Practice exercise page 698
In each of the following, indicate which salt in each of the following pair will form the more acidic (or more basic).
(a) NaNO_{3} or $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$
(b) KBr or KBrO
(c) $\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Cl}$ or BaCl_{2}
(d) $\mathrm{NH}_{4} \mathrm{NO}_{2}$ or $\mathrm{NH}_{4} \mathrm{NO}_{3}$

Answer:
a) $\quad \mathrm{NaNO}_{3} \leftrightarrow \mathrm{Na}^{+}+\mathrm{NO}_{3}^{-}$
Na^{+}ion from group 1 A has no effect on pH
$\mathrm{NO}_{3}{ }^{-}$ion is the conjugate base of strong acid HNO_{3} has no effect on pH

The solution is neutral
Fe^{3+} is not from group 1 A or 2 A , decrease the pH
NO_{3}^{-}ion is the conjugate base of strong acid HNO_{3} has no effect on pH
The solution is acidic
$\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$ more acidic than NaNO_{3}
b) K^{+}ion from group 1 A has no effect on pH
Br^{-}is a conjugate base of strong acid HBr it has no influence on pH

KBr form a neutral solution
$\mathrm{KBrO}, \mathrm{BrO}^{-}$is a conjugate base for a weak acid HBrO
$\mathrm{BrO}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{HBrO}+\mathrm{OH}^{-}$the solution is basic

KBr is more acidic than KBrO

Exercises page 710

16.15

a) what is the difference between the Arrhenius and Bronsted-Lowry definition of an acid?
b) $\mathrm{NH}_{3(\mathrm{~g})}$ and $\mathrm{HCl}_{(\mathrm{g})}$ react to form $\mathrm{NH}_{4} \mathrm{Cl}_{(s)}$ (figure 16.3) which substance is the Bronsted-Lowry acid in this reaction? Which is the Bronsted-Lowry base?

Answer:

a) Arrhenius base is added to water leads to an increase in the concentration of OH^{-}, while Arrhenius acid in water an increase in the concentration of H^{+}. Bronsted - Lowry base is accept a proton from $\mathrm{H}_{2} \mathrm{O}$ and the acid it donate a proton from $\mathrm{H}_{2} \mathrm{O}$.
b) $\mathrm{NH}_{3}+\mathrm{HCl} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}$

HCl is the Bronsted - Lowry acid and NH_{3} is the Bronsted - Lowry base

16.17

a) Give the conjugate base of the following Bronsted - Lowry acids (i) HIO_{3} (ii) NH_{4}^{+}
b) Give the conjugate acid of the following base (i) O^{2-} (ii) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$

Answer
a) i) $\mathrm{HIO}_{3} \rightarrow$ conjugate base is IO_{3}^{-}
ii) $\mathrm{NH}_{4}^{+} \rightarrow$ conjugate base is NH_{3}
b) i) $\mathrm{O}^{2-} \rightarrow$ conjugate acid is OH^{-}
ii) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-} \rightarrow$ conjugate acid is $\mathrm{H}_{3} \mathrm{PO}_{4}$

16.19

Designate the Bronsted - Lowry acid and Bronsted - Lowry base on the left side of each of the following equations, and also designate the conjugate acid and conjugate base on the right side.
a) $\mathrm{NH}_{4}{ }^{+}{ }_{\text {(aq) }}+\mathrm{CN}^{-}{ }_{(\text {aq) }} \leftrightarrow \mathrm{HCN}_{(\mathrm{aq)}}+\mathrm{NH}_{3(\text { aq) }}$
b) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}_{\text {(aq) }}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftrightarrow\left(\mathrm{CH}_{3}\right) \mathrm{NH}^{+}{ }_{\text {aq) }}+\mathrm{OH}^{-}{ }_{(\mathrm{aq})}$
c) $\mathrm{HCHO}_{2(\mathrm{aq})}+\mathrm{PO}_{4}{ }^{3-} \leftrightarrow \mathrm{CHO}^{2}{ }^{-}(\mathrm{aq})+\mathrm{HPO}_{4}{ }^{2-}{ }^{-}(\mathrm{aq})$

Answer:

a) $\quad \mathrm{NH}_{4}{ }^{+}{ }_{(\text {aq })}+\mathrm{CN}^{-}{ }_{\text {(aq) }} \leftrightarrow \mathrm{HCN}_{(\text {aq })}+\quad \mathrm{NH}_{3(\text { aq })}$
acid base conjugate acid conjugate base
b) $\quad\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}_{\text {(aq) }}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftrightarrow\left(\mathrm{CH}_{3}\right) \mathrm{NH}^{+}{ }_{\text {laq }}+\mathrm{OH}^{-}{ }_{(\text {aq })}$

	base	acid		conjugate acid		conjugate base
c)	$\mathrm{HCHO}_{2(\text { (aq) }}$	$+\mathrm{PO}_{4}{ }^{3-}$	\leftrightarrow	$\mathrm{CHO}_{2}{ }^{-}$(aq)	+	$\mathrm{HPO}_{4}{ }^{2-}$ (aq)
	acid	base		conjugate		conjugate acid

16.21

a) The hydrogen oxalate ion $\left(\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}\right)$is amphiprotic. Write a balance chemical equation showing how it acts as an acid toward water and another equation showing how it acts as a base towered water.
b) What is the conjugate acid of $\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$? what is the conjugate base.

Answer:
a) $\mathrm{HC}_{2} \mathrm{O}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}+\mathrm{H}_{3} \mathrm{O}^{+}$(behave as acid in water)
$\mathrm{HC}_{2} \mathrm{O}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+\mathrm{OH}^{-} \quad$ (behave as base in water)
b) $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ is a conjugate acid of $\mathrm{HC}_{2} \mathrm{O}_{4}$
$\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ is a conjugate base of $\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$

16.27

Predict the products of the following acid - base reactions, and predict whether the the equilibrium lies to the left or to the right of the equations.
a) $\mathrm{O}^{2-}{ }_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \longleftrightarrow$
b) $\mathrm{CH}_{3} \mathrm{COOH}_{\text {(aq) }}+\mathrm{HS}^{-} \longleftrightarrow$
c) $\mathrm{NO}_{2}^{-}+\mathrm{H}_{2} \mathrm{O}_{(I)} \longleftrightarrow$

Answer:
a) $\mathrm{O}^{2-}+\mathrm{H}_{2} \mathrm{O} \longleftrightarrow \mathrm{OH}^{-} \quad+\mathrm{OH}^{-}$
base acid conjugate acid conjugate base
b) $\mathrm{CH}_{3} \mathrm{COOH}_{(a q)}+\mathrm{HS}^{-} \longleftrightarrow \mathrm{H}_{2} \mathrm{~S}+\quad \mathrm{CH}_{3} \mathrm{COO}^{-}$
acid base conjugate acid conjugate base
c) $\mathrm{NO}_{2}^{-}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})} \leftrightarrow \mathrm{HNO}_{2}+\mathrm{OH}^{-}$

The equilibrium to the left
16.31

Calculate $\left[\mathrm{H}^{+}\right]$for such of the following solutions, and indicate whether the solution is acidic, basic or neutral.
A) $\left[\mathrm{OH}^{-}\right]=0.00045 \mathrm{M}$
b) $\left[\mathrm{OH}^{-}\right] 8.8 \times 10^{-9} \mathrm{M}$
c) a solution which $\left[\mathrm{OH}^{-}\right]$is 100 times greater then $\left[\mathrm{H}^{+}\right]$

Answer:
a) $\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=-\log (0.00045)=3.35$
$\mathrm{pOH}+\mathrm{pH}=14$
$\mathrm{pH}=10.65$
b) $\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=-\log \left(8.8 \times 10^{-9}\right)=7.06$
$\mathrm{pOH}=14.00-7.06=6.94$ the solution is acidic
c) $\left[\mathrm{H}^{+}\right] \times 100\left[\mathrm{H}^{+}\right]=10^{-14}$
$\left[\mathrm{H}^{+}\right]=10^{-14} / 100=10^{-16}$
$\left[\mathrm{H}^{+}\right]=10^{-8} \mathrm{pH}=8$ the solution is basic

$\underline{16.33}$

At the freezing point of water $0^{\circ} \mathrm{C}, \mathrm{K}_{\mathrm{w}}=1.2 \times 10^{-15}$. Calculate $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$for neutral solution of this temperature.

Answer:

$$
\begin{aligned}
& {\left[\mathrm{OH}^{-}\right]\left[\mathrm{H}^{+}\right]=1.2 \times 10^{-15} \quad \mathrm{X}^{2}=1.2 \times 10^{-15}} \\
& {\left[\mathrm{OH}^{-}\right]=\left[\mathrm{H}^{+}\right]=3.5 \times 10^{-6} \mathrm{M}}
\end{aligned}
$$

$\underline{16.35}$

By what factor does $\left[\mathrm{H}^{+}\right]$change for pH change of
a) 2.00 units
b) 0.50 units

Answer:

$$
\begin{aligned}
& \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \quad\left[\mathrm{H}^{+}\right]=10^{-2.00}=0.01=1 / 100 \\
& {\left[\mathrm{H}^{+}\right]=10^{-0.50}=0.316=1 / 0.316=3.2}
\end{aligned}
$$

16.39

Complete the following table by calculating the missing entries and indicating whether the solution is acidic or basic
$\underline{H}^{+} \quad \underline{\mathrm{OH}^{-}} \quad \underline{\mathrm{pH}} \quad \underline{\mathrm{pOH}} \quad \underline{\text { acidic or basic }}$
$7.5 \times 10^{-3} \mathrm{M}$
$3.6 \times 10^{-10} \mathrm{M}$
8.25
5.70

Answer:
$\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] 1.0 \times 10^{-14}$

$\left[\mathrm{OH}^{-}\right]=\left(1.0 \times 10^{-14}\right) /\left(7.5 \times 10^{-3}\right)=1.3 \times 10^{-12} \mathrm{M}$				
$\mathrm{pOH}=-\log \left(1.3 \times 10^{-12}\right)=11.87$				
$\mathrm{pH}=14-11.87=2.13$ the solution is acidic				
$\underline{\mathrm{H}^{+}}$	OH^{-}	pH	pOH	acidic or basic
$7.5 \times 10^{-3} \mathrm{M}$	$1.3 \times 10^{-12} \mathrm{M}$	2.13	11.87	acidic
$2.8 \times 10^{-5} \mathrm{M}$	$3.6 \times 10^{-10} \mathrm{M}$	4.56	9.44	acidic
$5.6 \times 10^{-9} \mathrm{M}$	$1.8 \times 10^{-6} \mathrm{M}$	8.25	5.75	basic
$5.0 \times 10^{-9} \mathrm{M}$	$2.0 \times 10^{-6} \mathrm{M}$	8.30	5.70	basic

16.41

The average pH of normal arterial blood is 7.40 . At normal body temperature is $37^{\circ} \mathrm{C}, \mathrm{K}_{\mathrm{w}}=$ 2.4×10^{-14}. Calculate $\left[\mathrm{H}^{+}\right]$, and pOH for the blood at this temperature.

Answer:

$$
\begin{aligned}
& \mathrm{PH}=-\log \left[\mathrm{H}^{+}\right]=7.40 \\
& {\left[\mathrm{H}^{+}\right]=3.98 \times 10^{-8} \mathrm{M}=4.00 \times 10^{-8} \mathrm{M}} \\
& {\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=2.410^{-14} \quad\left[\mathrm{OH}^{-}\right]=0.6 \times 10^{-6} \mathrm{M}} \\
& \mathrm{pOH}=-\log \left(0.6 \times 10^{-6}\right)=6.22
\end{aligned}
$$

16.45

Calculate the pH of the following strong acid solutions.
a) $8.5 \times 10^{-3} \mathrm{M} \mathrm{HBr}$.
b) 1.52 g of HNO_{3} in 575 mL of solution.
c) 5.00 mL of $0.250 \mathrm{M} \mathrm{HClO}_{4}$ diluted to 50.0 mL .
d) a solution formed by mixing 10.0 mL of 0.100 M HBr with 20.0 mL of 0.2 M HCl .

Answer:
a) $\mathrm{HBr} \rightarrow \mathrm{H}^{+}+\mathrm{Br}^{-}$

$$
8.5 \times 10^{-3} \mathrm{M} \quad 8.5 \times 10^{-3} \mathrm{M} \quad 8.5 \times 10^{-3} \mathrm{M}
$$

$$
\mathrm{pH}=-\log \left(8.5 \times 10^{-3}\right)=2.07
$$

b) mole of $\mathrm{HNO}_{3}=(1.52 \mathrm{~g}) /(63 \mathrm{~g} / \mathrm{mol})=0.024 \mathrm{~mol}$

```
molarity of HNO
```

$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log (0.042)=1.38$
c) $\mathrm{N} 1 \times \mathrm{V} 1=\mathrm{N} 2 \times \mathrm{V} 2$
$0.250 \mathrm{M} \times 5.00 \mathrm{~mL}=\mathrm{N} 2 \times 50.0 \mathrm{~mL}$
$\mathrm{N} 2=0.0250 \mathrm{M}$ molarity of $\mathrm{HClO}_{4}=$ molarity of $\left[\mathrm{H}^{+}\right]$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log (0.0250)=1.60$
d) $10 \mathrm{~mL}+20 \mathrm{~mL}=30 \mathrm{~mL}$ volume of solution
$\mathrm{N} 1 \times \mathrm{V} 1=\mathrm{N} 2 \times \mathrm{V} 2$
$0.100 \mathrm{M} \times 10 \mathrm{~mL}=\mathrm{N} 2 \times 30 \mathrm{~mL} \quad \mathrm{~N} 2=0.033 \mathrm{M}$ of $[\mathrm{HBr}]=\left[\mathrm{H}^{+}\right]$
$\mathrm{N} 1 \times \mathrm{V} 1=\mathrm{N} 2 \times \mathrm{V} 2$
$0.2 \mathrm{M} \times 20 \mathrm{~mL}=\mathrm{N} 2 \times 30 \mathrm{~mL} \quad \mathrm{~N} 2=0.133 \mathrm{M}$ of $\mathrm{HCl}=\left[\mathrm{H}^{+}\right]$
$0.033 \mathrm{M}\left[\mathrm{H}^{+}\right]$from $\mathrm{HBr}+0.133 \mathrm{M}\left[\mathrm{H}^{+}\right]$from $\mathrm{HCl}=0.166 \mathrm{M}$
$\mathrm{pH}=-\log (0.166)=0.778$

16.47

Calculate $\left[\mathrm{OH}^{-}\right]$and pH for
a) $1.5 \times 10^{-3} \mathrm{M} \mathrm{Sr}(\mathrm{OH})_{2}$
b) 2.250 g of LiOH in 250.0 mL of solution
c) 1.00 mL of 0.175 M NaOH diluted to 2.000 L
d) a solution formed by adding 5.00 mL of 0.105 M KOH to 15.0 mL of $9.5 \times 10^{-2} \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$

Answer:
a) $\mathrm{Sr}(\mathrm{OH})_{2} \rightarrow \mathrm{Sr}^{2+}+2 \mathrm{OH}^{-}$
$\left[\mathrm{OH}^{-}\right]=2 \times 1.5 \times 10^{-3}=3.0 \times 10^{-3} \mathrm{M}$
$\mathrm{pOH}=-\log \left(3.0 \times 10^{-3}\right)=2.523$

```
pH = 14-2.523 = 11.48
```

b) mole of $\mathrm{LiOH}=2.250 / 24=0.094$
[LiOH] $\mathrm{M}=(0.094 \mathrm{~mol} \mathrm{LiOH})(1000 \mathrm{~mL} / 250 \mathrm{~mL})=0.375 \mathrm{M}$ of LiOH
$\mathrm{LiOH} \rightarrow \mathrm{Li}^{+}+\mathrm{OH}^{-}$
$0.375 \quad 0.375$
$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=-\log (0.375)=0.426$
$\mathrm{pH}=14-0.426=13.57$
c) $\mathrm{N} 1 \times \mathrm{V} 1=\mathrm{N} 2 \times \mathrm{V} 2$

$$
\begin{aligned}
& 0.175 \times 1.0 \mathrm{~mL}=\mathrm{N} 2 \times 2000 \mathrm{~mL} \quad \mathrm{~N} 2=8.75 \times 10^{-5} \mathrm{M} \mathrm{NaOH} \\
& \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=-\log \left(8.75 \times 10^{-5}\right)=4.058 \\
& \mathrm{pH}=14-4.058=9.942
\end{aligned}
$$

d) total volume of solution $5.0 \mathrm{~mL}+15 \mathrm{~mL}=20 \mathrm{~mL}$
for $\mathrm{KOH} \quad \mathrm{N} 1 \times \mathrm{V} 1=\mathrm{N} 2 \times \mathrm{V} 2$
$0.105 \mathrm{M} \times 5.0 \mathrm{~mL}=\mathrm{N} 2 \times 20.0 \mathrm{~mL} \quad \mathrm{~N} 2=0.02625 \mathrm{M}$
KOH for $\mathrm{Ca}(\mathrm{OH})_{2} \quad 9.5 \times 10^{-2} \mathrm{M} \times 15 \mathrm{~mL}=\mathrm{N} 2 \times 20 \mathrm{~mL}$
$\mathrm{N} 2=0.07125 \mathrm{M}$ of $\mathrm{Ca}(\mathrm{OH})_{2}=0.07125 \mathrm{M}\left[\mathrm{OH}^{-}\right]$
total concentrations of $\left[\mathrm{OH}^{-}\right]=0.02625+2 x 0.07125=0.16875 \mathrm{M}=0.17 \mathrm{M}$
$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=-\log (0.17)=0.773$
$\mathrm{pH}=14-0.773=13.23$
16.53

Lactic acid $\left(\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}\right)$ has one acidic hydrogen. A 0.10 M solution lactic acid has $\mathrm{pH}=2.44$.

Calculate Ka.

Answer:

```
CH3
pH=-log[H+}]=2.4
```

$$
\begin{aligned}
& {\left[\mathrm{H}^{+}\right]=0.00363 \mathrm{M}} \\
& \mathrm{Ka}=\left[\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COO}^{-}\right]\left[\mathrm{H}^{+}\right] /\left[\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COO}\right]=(0.000363)(0.00363) / 0.1 \\
& \mathrm{Ka}=1.32 \times 10^{-4}=1.4 \times 10^{-4}
\end{aligned}
$$

16.55

A 0.10 M solution of chloroacetic acid $\left(\mathrm{ClCH}_{2} \mathrm{COOH}\right)$ is 11.0% ionized. Using this information, calculate $\left[\mathrm{ClCH}_{2} \mathrm{COO}^{-}\right],\left[\mathrm{H}^{+}\right]$, and $\left[\mathrm{ClCH}_{2} \mathrm{COOH}\right]$ and Ka for chloroacetic acid.

Answer:

Remain chloroacetic acid $=0.10-0.011=0.089 \mathrm{M}$					
	$\mathrm{ClCH}_{2} \mathrm{COOH}_{(\mathrm{aq})}$		$\mathrm{ClCH}_{2} \mathrm{COO}^{-}{ }_{(\mathrm{aq})}$	+	$\mathrm{H}^{+}{ }_{(\mathrm{aq})}$
initial	0.011 M		0 M		OM
change	- 0.011 M		+ 0.011 M		+ 0.011 M
equilibrium	(0.10-0.011)		0.011 M		0.011 M
Ка $=(0.011)(0.011) /(0.089)=1.4 \times 10^{-3}$					

16.57

A particular sample of vinegar has a $\mathrm{pH}=2.9$. If acetic acid is the only acid that vinegar contains $\left(\mathrm{Ka}=1.8 \times 10^{-5}\right)$, calculate the concentration of acetic acid in the vinegar.

Answer:

$$
\begin{aligned}
& \mathrm{pH}-\log \left[\mathrm{H}^{+}\right]=2.90 \\
& {\left[\mathrm{H}^{+}\right]=0.00126=\text { the concentration of vinegar }} \\
& \mathrm{CH}_{3} \mathrm{COOH} \leftrightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+} \\
& \mathrm{Ka}=\left[\mathrm{CH}_{3} \mathrm{COO}^{-1}\right]\left[\mathrm{H}^{-}\right] /\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=1.8 \times 10^{-5} \\
& (0.00126)(0.00126) /\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=1.8 \times 10^{-5} \\
& {\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=0.0882 \mathrm{M}}
\end{aligned}
$$

$\underline{16.63}$

Saccharin, a sugar substitute, is a weak acid with $\mathrm{pKa}=2.32$ at $25^{\circ} \mathrm{C}$. It ionizes in aqueous solution as follows:
$\mathrm{HNC}_{7} \mathrm{H}_{4} \mathrm{SO}_{3 \text { (aq) }} \leftrightarrow \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{NC}_{7} \mathrm{H}_{4} \mathrm{SO}_{3}{ }^{-}{ }^{(a q)}$

What is the pH of a 0.10 M solution of this substance?

Answer:
16.65

Calculate the percent ionization of hydrazoic acid $\left(\mathrm{HN}_{3}\right)$ in solutions each of the following concentrations $\left(\mathrm{Ka}=1.9 \times 10^{-5}\right)$
a) 0.400 M
b) 0.100 M
c) 0.0400 M

Answer:
a) percent ionization $=\left[\mathrm{H}^{+}\right]_{\text {equ }} /[\mathrm{HA}]_{\text {initial }} \times 100 \%$

$$
\begin{aligned}
& \mathrm{HN}_{3} \leftrightarrow \mathrm{H}^{+}+\mathrm{N}_{3}^{-} \\
& \mathrm{Ka}=\left[\mathrm{H}^{+}\right]\left[\mathrm{N}_{3}^{-}\right] /\left[\mathrm{HN}_{3}\right]=1.9 \times 10^{-5} \quad \mathrm{X}=\left[\mathrm{H}^{+}\right]=\left[\mathrm{N}_{3}^{-}\right] \\
& \mathrm{X}^{2} /(0.4-\mathrm{X})=1.9 \times 10^{-5} \quad \mathrm{X}=2.77 \times 10^{-3} \mathrm{M}=\left[\mathrm{H}^{+}\right]
\end{aligned}
$$

$$
\text { Percent ionization }=\left(2.77 \times 10^{-3}\right) /(0.4) \times 100=0.69 \%
$$

b) $\left[\mathrm{H}^{+}\right]\left[\mathrm{N}_{3}{ }^{-}\right] /\left[\mathrm{HN}_{3}\right]=1.9 \times 10^{-3} \mathrm{M}$

$$
\begin{aligned}
& \text { pKa }=-\log K a=2.32 \\
& \mathrm{Ka}=4.79 \times 10^{-3}=\left[\mathrm{H}^{+}\right]\left[\mathrm{NC}_{7} \mathrm{H}_{4} \mathrm{SO}_{3}{ }^{-}\right] /\left[\mathrm{HNC}_{7} \mathrm{H}_{4} \mathrm{SO}_{3}\right] \\
& \mathrm{HNC}_{7} \mathrm{H}_{4} \mathrm{SO}_{3 \text { (aq) }} \quad \leftrightarrow \quad \mathrm{H}^{+}{ }_{(\mathrm{aq})} \quad+\quad \mathrm{NC}_{7} \mathrm{H}_{4} \mathrm{SO}_{3}{ }^{-}{ }_{(\mathrm{aq})} \\
& \begin{array}{llll}
\text { initial } & 0.10 \mathrm{M} & 0 \mathrm{M} & 0 \mathrm{M}
\end{array} \\
& \text { change }-X M+X M+X M \\
& \text { equilibrium } \quad(0.10-X) M \quad X M M \\
& X^{2} /(0.10-X)=4.79 \times 10^{-4} \\
& X=\left[\mathrm{H}^{+}\right]=2.23 \times 10^{-2} \mathrm{M} \\
& \mathrm{pH}=-\log \left(2.23 \times 10^{-2}\right)=1.652=1.7
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{X}^{2} /(0.1-\mathrm{X})=1.9 \times 10^{-3} \quad \mathrm{X}=1.38 \times 10^{-3} \mathrm{M}=\left[\mathrm{H}^{+}\right] \\
& \quad \text { Percent ionization }=\left[\mathrm{H}^{+}\right]_{\text {equ }} /[\mathrm{HA}]_{\text {initial }} \times 100=1.4 \% \\
& \text { c) } \mathrm{X}^{2} /(0.04-\mathrm{X})=1.9 \times 10^{-5} \quad \mathrm{X}=0.872 \times 10^{-3} \mathrm{M}=\left[\mathrm{H}^{+}\right] \\
& \\
& \text {percent ionization }=\left(0.872 \times 10^{-3}\right) / 0.04 \times 100=2.2 \%
\end{aligned}
$$

16.73

Write the chemical equations and Kb expression for the ionization of each of the following bases in aqueous solutions.
a) dimethyl amine $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$
b) carbonate ion $\mathrm{CO}_{3}{ }^{2-}$
c) formate ion CHO_{2}

Answer:

a) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftrightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}^{+}+\mathrm{OH}_{(\mathrm{aq})}$

$$
\mathrm{Kb}=\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}^{+}\right]\left[\mathrm{OH}^{-}\right] /\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}\right]
$$

b) $\mathrm{CO}_{3}{ }^{2-}{ }_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \longleftrightarrow \mathrm{HCO}_{3}^{-{ }_{(a q)}}+\mathrm{OH}^{+}{ }_{(\mathrm{aq})}$

$$
\mathrm{Kb}=\left[\mathrm{HCO}_{3}^{-}\right]\left[\mathrm{OH}^{-}\right] /\left[\mathrm{CO}_{3}{ }^{2-}\right]
$$

c) $\mathrm{HCOO}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})} \leftrightarrow \mathrm{HCOOH}_{(\mathrm{aq})}+\mathrm{OH}^{-}(\mathrm{aq})$ $\mathrm{Kb}=[\mathrm{HCOOH}]\left[\mathrm{OH}^{-}\right] /\left[\mathrm{HCOO}^{-}\right]$

16.83

Calculate $\left[\mathrm{OH}^{-}\right]$and pH for each of the following solutions
Ka for $\mathrm{HCN}=4.9 \times 10^{-10}$, Ka for $\mathrm{H}_{2} \mathrm{CO}_{3}=5.6 \times 10^{-11}$, Ka for $\mathrm{HNO}_{2}=4.5 \times 10^{-4}$)
a) 0.10 M NaCN
b) $0.080 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$
c) a mixture that is 0.10 M in NaNO_{2} and 0.20 M in $\mathrm{Ca}\left(\mathrm{NO}_{2}\right)_{2}$

Answer:
a) $\mathrm{NaCN} \rightarrow \mathrm{Na}^{+}+\mathrm{CN}^{-}$

$$
\begin{aligned}
& \mathrm{CN}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HCN}+\mathrm{OH}^{-} \\
& \mathrm{Kb} \times \mathrm{Ka}=\mathrm{Kw} \quad \mathrm{~Kb}=\left(1.0 \times 10^{-14}\right) /\left(4.9 \times 10^{-10}\right)=0.204 \times 10^{-4} \\
& \mathrm{~Kb}=[\mathrm{HCN}]\left[\mathrm{OH}^{-}\right] /\left[\mathrm{CN}^{-}\right]=0.204 \times 10^{-4} \\
& \mathrm{CN}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HCN}+\mathrm{OH}^{-} \\
& \begin{array}{llll}
\text { initial } & 0.10 \mathrm{M} & 0 \mathrm{M} & 0 \mathrm{M}
\end{array} \\
& \text { change }-X M+X M+X M \\
& \begin{array}{lll}
\text { equilibrium } \quad 0.10-X \quad X M
\end{array} \\
& (X)(X) / 0.1-X=0.204 \times 10^{-4} \quad X=1.43 \times 10^{-3} \mathrm{M}=\left[\mathrm{OH}^{-}\right] \\
& {\left[\mathrm{OH}^{-}\right]\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-14} \quad\left[\mathrm{H}^{+}\right]=\left(1.0 \times 10^{-14}\right) /\left(1.43 \times 10^{-3}\right)=0.7 \times 10^{-11}} \\
& \mathrm{pH}=-\log \left(0.7 \times 10^{-11}\right)=11.15 \\
& \text { b) } \mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow 2 \mathrm{Na}^{+}+\mathrm{CO}_{3}{ }^{2-} \\
& \mathrm{CO}_{3}{ }^{2-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HCO}_{3}^{-}+\mathrm{OH}^{-} \\
& \mathrm{Kb}=\left(1.0 \times 10^{-14}\right) /\left(5.6 \times 10^{-11}\right)=0.18 \times 10^{-3} \\
& \mathrm{~Kb}=\left[\mathrm{HCO}_{3}{ }^{-}\right]\left[\mathrm{OH}^{-}\right] /\left[\mathrm{CO}_{3}{ }^{2-}\right]=0.18 \times 10^{-3} \\
& X^{2} /(0.08-X)=0.18 \times 10^{-3} \quad X=3.6 \times 10^{-3}=\left[\mathrm{OH}^{-}\right] \\
& {\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14} \quad\left[\mathrm{H}^{+}\right]=\left(1.0 \times 10^{-14}\right) /\left(3.8 \times 10^{-3}\right)=0.263 \times 10^{-11} \mathrm{M}} \\
& \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log \left(0.263 \times 10^{-11}\right)=11.58 \\
& \text { c) } \mathrm{NaNO}_{2} \rightarrow \mathrm{Na}^{+}+\mathrm{NO}_{2}^{-} \\
& \mathrm{NO}_{2}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HNO}_{2}+\mathrm{OH}^{-}
\end{aligned}
$$

16.85

Predict whether aqueous solutions of the following compounds are acidic, basic or neutral
a) $\mathrm{NH}_{4} \mathrm{Br}$
b) FeCl_{3}
c) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
d) HClO_{4}
e) $\mathrm{NaHC}_{2} \mathrm{O}_{4}$

Answer:
a) $\mathrm{NH}_{4} \mathrm{Br} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{Br}^{-}$
$\mathrm{NH}_{4}{ }^{+}$is the conjugate acid of base NH_{3}
Br^{-}is conjugate base of a strong acid HBr , it has no influence on pH .

The solution of the salt is acidic
b) $\mathrm{FeCl}_{3} \rightarrow \mathrm{Fe}^{3+}+3 \mathrm{Cl}^{-}$
Fe^{3+} is not from group 1 A or group 2 A , decrease the pH
Cl^{-}is the conjugate base of strong HCl , has no influence on pH

The solution of the salt is acidic
c) $\quad \mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow 2 \mathrm{Na}^{+}+\mathrm{CO}_{3}{ }^{2-}$
Na^{+}is from group 1 A has no effect on pH
$\mathrm{CO}_{3}{ }^{2-}$ is a conjugate base of weak acid $\mathrm{H}_{2} \mathrm{CO}_{3}$

The solution of the salt is basic
d) $\mathrm{KClO}_{4} \rightarrow \mathrm{~K}^{+}+\mathrm{ClO}_{4}$
K^{+}is from group 1A has no effect on pH
$\mathrm{ClO}_{4}{ }^{-}$is a conjugate base of the acid HClO_{4} has no effect on pH

The solution of the salt is neutral
e) $\mathrm{NaHC}_{2} \mathrm{O}_{4} \rightarrow \mathrm{Na}^{+}+\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$
Na^{+}is from group 1A has no influence on pH
$\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}$is a conjugate acid of a base $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$

The solution of the salt is acidic
16.87

An unknown salt is either $\mathrm{NaF}, \mathrm{NaCl}$, or NaOCl . When 0.05 mole of salt is dissolved in water to form 0.500 L of solution. The pH of solution is 8.08 . What is the identity of the salt?
(Kb for the $\mathrm{F}^{-}=1.5 \times 10^{-11}, \mathrm{~Kb}$ for $\mathrm{ClO}^{-}=0.334 \times 10^{-6}, \mathrm{Cl}^{-}$is from strong acid HCl)

Answer:

$$
\begin{aligned}
& \mathrm{pH}+\mathrm{pOH}=14 \\
& 8.08+\mathrm{pOH}=14 \quad \mathrm{pOH}=5.92 \\
& \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=5.92 \\
& {\left[\mathrm{OH}^{-}\right]=1.2 \times 10^{-6} \mathrm{M}} \\
& \mathrm{~Kb}=(\mathrm{X})(\mathrm{X}) / 0.1=\left(1.20 \times 10^{-6}\right)\left(1.2 \times 10^{-6}\right) / 0.1=1.45 \times 10^{-11} \\
& \mathrm{~Kb} \times \mathrm{Ka}=10^{-14} \quad \mathrm{Ka}=\left(1.0 \times 10^{-14}\right) /\left(1.45 \times 10^{-11}\right)=7.14 \times 10^{-3}
\end{aligned}
$$

Kb for the anion salt is $1.5 \times 10^{-11}, \mathrm{Ka}$ for the conjugate acid $=7.14 \times 10^{-3}$. The conjugate acid is F^{-}, the salt is NaF .

Prepared by Dr. Nabil Nassory

