Chapter 3 (exercises)

Q1. Sample exercise 3.7 page 90

Without using calculator, arrange the following samples in order to increasing number of carbon atoms:

12 g 12 C , 1 mol C_2H_2 , 9 x 10^{23} molecules of CO_2

Answer:

12 g of 12 C = 1 mole of C = 6.03×10^{23} number of carbons 1 mole of $C_2H_2 = 2 \times 6.03 \times 10^{23} = 12.06 \times 10^{23}$ carbon atoms (because we have 2 atoms in C_2H_2) CO_2 contain 9×10^{23} carbon

The order of increasing carbon atoms is $C_2 H_2 > CO_2 > {}^{12}C$

Q2. Practice exercise page 90

Without using calculator, arrange the following samples in order of increasing number of oxygen atoms: $1 \text{ mole of H}_2\text{ O}$, 1 mole of CO_2 , $3 \times 10^{23} \text{ molecules O}_3$.

Answer:

1 mole H_2 O contain 1 mole oxygen = 6.03×10^{23} number of oxygen atoms in H_2 O 1 mole of CO_2 contain 2 moles of oxygen = $2 \times 6.03 \times 10^{23}$ number of oxygen atoms in CO_2 O_3 molecule contain 3 x 3 x 10^{23} oxygen atoms = 9.0×10^{23}

The order is: $H_2O < O_3 < CO_2$

Q3. Sample exercise 3.8 page 90

Calculate the number of H atoms in 0.350 mole of $C_6\,H_{12}\,O_6$

Answer:

1 mole of $C_6 H_{12} O_6$ contain 6.03 x 10^{23} molecules of $C_6 H_{12} O_6$ 0.250 mole of $C_6 H_{12} O_6$ contain (0.250 mole) (6.03 x 10^{23}) /(1 mole) = 2.11 x 10^{23} atom s of $C_6 H_{12} O_6$ Each molecule of $C_6 H_{12} O_6$ contain 12 H atoms 2.11×10^{23} atoms of $C_6 H_{12} O_6$ contain (12 H atoms) x (2.11 x 10^{23}) / 1 = 2.53 x 10^{24} H atoms

Q4. Practice exercise page 91

How many oxygen atoms are in a) 0.25 mole of Ca(NO₃)₂, b) 1.50 Na₂ CO₃

Answer:

a) Number of molecules of $Ca(NO_3)_2 = (0.25 \text{ mole of } Ca(NO_3)_2) \times (6.03 \times 10^{23}) / (1 \text{ mole of } Ca(NO_3)_2$ = 1.51 x 10²³ number of $Ca(NO_3)_2$ molecule

Each 1 molecule of Ca(NO₃)₂ contain 6 oxygen atoms

Number of oxygen atoms = $(1.51 \times 10^{23})x(6)/(1) = 9.06 \times 10^{23}$

b)number of molecules of Na(CO₃)₂ = (1.50 mole of Na₂CO₃)x(6.03 x 10^{23})/(1 mole of Na₂CO₃) = 9.05 x 10^{23}

Each 1 molecule of Na₂ CO₃ contain 3 atoms of oxygen

Numner of oxygen atoms = $(9.05 \times 10^{23}) \times (3) / 1 = 27.1 \times 10^{23}$

Q5. Sample exercise 3.9 page 92

What is the mass in grams of 1.000 mole glucose ($C_6 H_{12} O_6$)?

Answer:

We are given a chemical formula $C_6 H_{12} O_6$ and asked for the determination its molar mass.

6 C atoms = 6(12.0 amu) = 72.0 amu

12 H atoms = 12(1.0 amu) = 12 amu

6 O atoms = 6(16.0 amu) 96.0 amu

Total = 180.0 amu

Glucose has a formula weight = 180.0 amu

Glucose has a mass of = 180.0 g

Glucose has a molar mass of = 180.0 mol/g

Q6. Practice exercise page 92

Calculate the molar mass of $Ca(NO_3)_2$.

$$1 \text{ Ca atom} = 1(40 \text{ amu}) = 40 \text{ amu}$$

Molar mass of $Ca(NO_3)_2 = 164$ amu

Q.7 Sample exercise 3.10 page 93

Calculate the number of molar mass of glucose in 5.380 g of $C_6 H_{12} O_6$.

Answer:

Molar mass of
$$C_6 H_{12} O_6 = 180 g / mol$$

Number of moles = mass / molar mass = (5.380 g)/(180 g/mol) = 0.02989 mol

Q.8 Practice exercise page 93

How many moles of NaHCO₃ are in 508 g of NaHCO₃.

Answer:

Number of moles of NaHCO₃ = mass / molar mass = (508 g)/(84 g/mol) = 6.05 mol

Q9. Practice exercise page 93

What is the mass, in gram , a) 6.33 mol of NaHCO₃ and b) 3.0×10^{-5} mole of sulfuric acid

Answer:

a)mole of NaHCO₃ = mass/ molar mass

$$6.33 \text{ mole} = \text{mass} / (84 \text{ g/mol}) = 532 \text{ g}$$

b) mole of $H_2SO_4 = mass / molar mass$

$$3.0 \times 10^{-5} \text{ mole} = \text{mass} / (98 \text{ g/mol})$$
 mass = $2.9 \times 10^{-3} \text{ g}$

Q10. Practice exercise page 93

a)How many nitric acid molecules are in $4.20 \ g \ HNO_3 \ ? \ b$) How many O_2 atoms are in the sample?

Answer:

a) Mole of $HNO_3 = (4.20 \text{ g})/(63 \text{ g/mol}) = 0.067$

1 mole of HNO₃ contain 6.03 x 10²³ molecules

 $0.067 \text{ mole of HNO}_3 = (0.067 \text{ mol})(6.03 \times 10^{23} \text{ molecules})/(1 \text{ mol}) = 0.402 \times 10^{23} \text{ molecules}$

b) 1 molecule HNO₃ contain 3 O atom

Oxygen in sample contain = $(0.402 \times 10^{23}) (3) / (1) = 1.2 \times 10^{23}$ molecules.

Q11. Sample exercise 3.16 page 100

How many grams of water are produced in the oxidation of 1.00 g glucose ($C_6H_{12}O_6$)?

$$C_6 H_{12} O_{6 (g)} + 6 O_{2 (g)} \rightarrow 6 C O_{2 (g)} + 6 H_2 O_{(I)}$$

Answer:

Mole of
$$C_6 H_{12} O_6 = (1g)/(180.1 g/mol) = 0.00556$$

1 mole of glucose forms 6 mole CO₂

Mole of $H_2O = (0.00556 \text{ mol glucose}) (6 \text{ mol of } CO_2) / 1 \text{ mol of glucose}$

= 0.033

Grams of $H_2O = 0.033$ mole x (18 g/mol) = 0.6 g

Q12. Practice exercise page 101

The decomposition of KClO $_3$ to form oxygen 2KClO $_3 \rightarrow 2$ Cl + 3O $_2$ (g) . How many grams of O $_2$ can Be prepared from 4.50 g KClO $_3$?

Answer:

Mole of
$$KClO_3 = (4.50 g)/(122.5) = 0.037$$

Mole of $O_2 = (0.037 \text{ mole KClO}_3) (3 \text{ mol } O_2) / (2 \text{ mole KClO}_3) = 0.0551$

Grams og $O_2 = (0.0551 \text{ mole } O_2) \times 16 = 0.88$

Q13. Sample exercise 3.17 page 101

The lithium hydroxide reacts with CO_2 to form solid lithium carbonate and liquid water. How many Grams of CO_2 can be absorbed by 1 g of LiOH?

Answer:

Moles of LiOH =
$$(1 \text{ g}) / (23.95 \text{ g/mol}) = 0.042$$

2 mole LiOH form 1 mole CO₂
 $0.042 \text{ mole of LiOH form} = (0.042 \text{ mol LiOH}) \times (1 \text{ mol CO}_2) / (2 \text{ mol LiOH})$
 $= 0.021 \text{ mole CO}_2$
Grams of CO₂ = $(0.021 \text{ mole}) \times (44.01 \text{ g/mol}) = 0.919 \text{ g}$

Q14. Practice exercise page 102

Propane $C_3 H_3$, is a common fuel used for cooking heating. What mass of O_2 is consumed in the combustion of 1.0 g of propane?

Answer:

$$C_3 H_{8 (g)} + 5O_{2 (g)} \rightarrow 3 CO_{2 (g)} + 4 H_2 O_{(I)}$$

Mole of $C_3 H_8 = (1 g) / (39 g/mol) = 0.023$

1 mole of $C_3 H_8$ needs 5 mole of O_2

Moles of $O_2 = (0.023 \text{ mole } C_3 H_8) x(5 \text{ mol mol } O_2) / (1 \text{ mol } C_3 H_8) = 0.0115$

Mass of $O_2 = (0.0115 \text{ mole of } CO_3) x (32 g/mol) = 3.68$

Q 15. Sample exercise 3.18 page 104

The important commercial process for converting N_2 from the air into nitrogen containing compounds is based on the reaction of N_2 and H_2 to form NH_3 .

$$N_{2(g)} + H_{2(g)} \rightarrow NH_{3(g)}$$

How many moles of NH₃ can be formed from 3.0 mole N₂ and 6.0 mole H₂?

Answer:

1 mole of
$$N_2$$
 needs 3.0 mole of H_2

Mole of H_2 = (3.0 mol) x (3.0 mol H_2) / (1 mol N_2) = 9.0 mole

Mole of NH_3 = (6 mol H_2)x (2 mol NH_3 /3 mol H_2) = 4.0 mol NH_3

$$N_2 + 3H_3 \rightarrow 2NH_3$$

Initial quantities 3.0 mole 6.0 mole 0 mole

Change (reaction) - 2 mole -6.0 mole + 4.0 mole

Final quantities 1.0 mole 0 mole 4.0 mole

Q16. Practice exercise page 104

Consider the reaction $2AI_{(s)} + 3CI_{2(g)} \Rightarrow 2AICI_{3(s)}$. A mixture of 1.5 mole of AI and 3.0 mole of CI₂ to react.

- a) Which is the limiting reaction?
- b) How many moles of the AlCl₃ are formed?
- c) How many moles of the excess reactant at the end of reaction?

Answer:

2 moles of Al needs 3 moles of Cl₂

1.5 mole of Al needs $Cl_2 = (1.5 \text{ mol Al}) \times (3 \text{ mol } Cl_2) / (2 \text{ mol Al}) = 2.25 \text{ mol of } Cl_2$

Al is a limiting reaction or limiting reagent.

Cl₂ is the excess reaction or excess reagent.

Moles of AlCl₃ formed = $(2.25 \text{ mol Cl}_2)x (2 \text{ mol AlCl}_3)/(3 \text{ mol Cl}_2) = 1.5 \text{ mol AlCl}_3$

2AI +
$$3Cl_2$$
 \rightarrow 2AICl₃

Initial quantities 1.5 mole 3.0 mole 0 mole

Change (reaction 0 - 1.5 mole - 2.25 mole + 1.5 mole

Final quantities 0 mole 0.75 mole 1.5 mole

Q17. Sample exercise 3.19 page 104

Consider the following reaction that occur in the fuel cell $2H_{2(g)} + O_{2(g)} \rightarrow 2H_2O$

Suppose a fuel cell is set with 150 g of H_2 gas and 1500 g of O_2 gas. How many grams of water can be formed?

Answer:

Q18. Practice exercise page 105

A strip of zinc metal with mass 2.00 g is placed in an aqueous solution containing 2.50 g of AgNO₃,

the reaction is
$$Zn_{(s)} + 2 AgNO_{3 (s)} \rightarrow 2 Ag_{(s)} + Zn(NO)_{2 (aq)}$$
 .

- a) Which of the reaction is limiting?
- b) How many grams of Ag will form?
- c) How many grams of Zn(NO)₂ will form?
- d) How many grams of excess reagent will be left at the end of reaction?

Answer:

a)1 mol Zn = 2 mol AgNO₃ = 2 mol Ag = 1 mol Zn(NO)₂ mole of Zn =
$$(2.00 \text{ g}) / (65.39 \text{ g/mol}) = 0.031$$
 mole of AgNO₃ = $(2.50 \text{ g}) / (169.89 \text{ g/mol}) = 0.015$ AgNO₃ is the limiting reagent b) 2 mol AgNO₃ = 2 mol Ag mole of Ag = $(0.015 \text{ mol AgNO}_3) \times (2 \text{ mol Ag}) / (2 \text{ mol AgNO}_3) = 0.015 \text{ mole}$ gram of Ag = $(0.015 \text{ mole}) \times (107.89 \text{ g/mol}) = 1.62 \text{ g}$ c)2 mol of Ag = 1 mole Zn(NO₃)₂ mole of Zn(NO)₂ = $(0.015 \text{ mol Ag}) \times (1 \text{ mol Zn(NO)}_2) / (2 \text{ mol Ag}) = 0.0075$

gram of
$$Zn(NO)_2 = (0.0075 \text{ mole}) \times (189.39 \text{ g/mol}) = 1.4 \text{ g}$$

d)excess of reagent $Zn = 0.031 - (0.015/2) = 0.0235 \text{ mol}$
gram of $Zn = 0.0235 \times 65.39 = 1.53 \text{ g}$

Q 19. Practice page 107

Imagine that you working on ways to improve the process by which iron ore containing Fe $_2$ O $_3$ is converted into Fe. The reaction is Fe $_2$ O $_3$ (s) + 3CO $_2$ (g) \Rightarrow 2Fe $_3$ (s) + 3CO $_2$ (g).

a)If you start with 150 g of Fe $_2$ O $_3$ as the limiting reagent, what is the theoretical yield of Fe?

b)If the actual yield of Fe in your test was 87.9 g, what was the percentage yield?

Answer:

a)1 mol Fe₂O₃ = 3 mol CO = 2 mol Fe = 3 mol CO₂ mole of Fe₂O₃ =
$$(150 \text{ g}) / (159.694 \text{ g/mol}) = 0.94 \text{ mol}$$
 mole of Fe = $(0.94 \text{ mol Fe}_2\text{ O}_3) \times (2 \text{ mol Fe}) / (1 \text{ mol /g}) = 1.88$ gram of Fe = $(1.88 \text{ mol}) \times (55.847 \text{ g/mol}) = 105 \text{ g}$ b) Theoretical yield = $(87.9 \text{ g} / 105 \text{ g}) \times 100 = 83\%$

Exercise page 109

3.33

Calculate the following quantities

- a) Mass in gram of 0.105 moles sucrose $C_{12} H_{22} O_{11}$.
- b) Mole of $Zn(NO)_3$ in 143.50 g of this substance.
- c) Number of molecules in 1.0 x 10⁻⁶ mole of CH₃ CH₂ OH.
- d) Number of N atoms in 0.41 mole NH₃.

Answer:

a) molar mass of $C_{12} H_{22} O_{11} = 12 \times 12 + 22 \times 1 + 11 \times 16 = 342$ grams of sucrose = 0.105 mole x 342 = 35.91 g

b) molar mass of
$$Zn(NO)_2 = 65.39 + 2 \times 14 + 2 \times 16 = 125.39$$

Mole of $Zn(NO)_2 = (143.509 \text{ g}) / (125.39 \text{ g/mol}) = 1.145$
c)1.0 x 10⁻⁶ moles contain CH₃ CH₂ OH molecules = $(6.03 \times 10^{23} \text{ molecules})(1.0 \times 10^{-6})/(1 \text{ mole})$
 $= 6.03 \times 10^{17} \text{ molecules of CH}_3 \text{ CH}_2 \text{ OH}.$
d)molecules on NH₃ in 0.410 = $(6.03 \times 10^{23})(0.410 \text{ mol NH}_3) / (1 \text{ mol NH}_3)$
 $= 2.4723 \times 10^{23} \text{ molecules of NH}_3$
1 molecule of NH₃ = 1 atom of N
2.4723 x 10²³ molecules of NH₃x (1 N / 1 NH₃) = 2.4723 x 10²³ number of atoms of N

<u>3.39</u>

A sample of glucose contains 1.250×10^{21} carbon atom.

- a)How many atoms of hydrogen does in contain?
- b)How many molecules of glucose does it contain?
- c)How many moles of glucose does it contain?
- d)What is the mass of this sample in grams?

Answer:

a)6 mol of $C = 12 \text{ mol of } H_2$

hydrogen atoms =
$$(1.25 \times 10^{21} \text{ C atoms}) \times (12 \text{ mol H}_2)/(6 \text{ mol H}_2 \text{ atoms})$$

= $2.50 \times 10^{21} \text{ H}_2 \text{ atoms}$

b)1 mol
$$C_6 H_{12} H_6 = (1.25 \text{ C atoms}) \times (1 \text{ mol } C_6 H_{12} O_6)/(6 \text{ mol C}) = 0.21 \times 10^{21}$$

c)1 mol
$$C_6 H_{12} O_6 = (0.21 \times 10^{21} \text{ atoma}) (1 \text{ mol } C_6 H_{12} O_6) / (6.03 \times 10^{23}) = 3.5 \text{ mol}$$

d)mass of glucose = 3.5 mol x 180 g/mol = 6.21

<u>3.7</u>

Sodium hydroxide reacts with CO_2 as follows $2NaOH_{(s)} + CO_{2(g)} \rightarrow Na_2CO_{3(s)} + H_2H_{(l)}$ Which reagent is the limiting when 1.85 mole NaOH and 1.00 mole CO_2 are allowed to react? How many moles of Na_2CO_3 can be produced? How many moles of the excess reactant remain after the completion of the reaction?

Answer:

2 mol NaOH = 1 mol CO_2 = 1 mol Na_2CO_3 1 mol H_2O Mole of CO_2 = (1.85 mol NaOH)x (1 mol CO_2) / (2 mol NaOH) = 0.925 mol CO_2 The limiting reagent is NaOH

1.00 – 0.025 = 0.075 mole of CO_2 (excess reagent)

Mole of $Na_2 CO_3$ = (1 mol $Na_2 CO_3$)x(1.85 mol NaOH) / (2 mol NaOH) = 0.925 mole