Chapter 8 exercises # Q1. Practice exercise page 302 Which substances would you expect to have the greatest lattice energy, $$MgF_2$$, CaF_2 , ZrO_2 #### Answer: According to the lattice energy $E_{el} = k \times Q_1 \times Q_2 / d$, the lattice energy incrase as the charge of ion increases. ZnO_2 has higher lattice energy because the charge of Zn is 4 higher than Zn0 higher than Zn1 higher than Zn2 higher than Zn3 higher than Zn4 higher than Zn5 higher than Zn6 higher than Zn8 higher than Zn9 high ### Q2. Practice exercise page 303 Predict the charges on the ions formed when magnesium reacts with nitrogen. #### Answer: ``` atomic number of Mg = 12 electronic configuration is 1S^2 2S^2 2P^6 3S^2 [Mg] 3S^2 loss two electrons to form Mg²⁺ ion atomic number of N = 7 electronic configuration is 1S^2 2S^2 2P^3 [N] 2P^3 gains 3 electrons to form N³⁻ ``` # Q3. Practice exercise page 264 (chapter 7) Which of the following atoms is largest: S^{2-} , S, O^{2-} ? #### Answer: $S^{2^{-}}$ is larger than S because S gain 2 electrons to form an ion $S^{2^{-}}$ with large ionic radii, S below O in the group 6A with larger atomic number. than the largest one is $S^{2^{-}}$. # Q4. Practice exercise page 264 (chapter 7) Which of the following ions is largest, Rb⁺, Sr²⁺, Y³⁺. # Answer: the atomic number of the following Rb (37), Sr (38), Y (39) the isoelectric series of ions Rb⁺, Sr²⁺, Y³⁺ having 36 electrons As the nuclear charge increase the ionic radii decreases, therefore, the Rb⁺ the largest one. ### Q5. Practice exercise page 305 Compare the Lewis symbol for neon with the Lewis structure for methane CH₄. in what important way are the electrons arrangements about neon and carbon alike? In what important respect are the different? #### Answer: atomic number of Ne is $10 \rightarrow$ electronic configuration $1S^2 2S^2 2P^6 \rightarrow [Ne] 2P^6$ atomic number of C is $6 \rightarrow$ electronic configuration $1S^2 2S^2 2P^2 \rightarrow [C] 2P^2$ Both atoms have an octet of electrons about them. Wow ever, the electrons about neon are unshared electron pairs, whereas, those about carbon with four hydrogen atoms. ### Q6. Practice exercise page 310 Which of the following about is the most polar S-CI, S-Br, Se-CI, S-Br <u>Answer</u>: (S) is the common to the S-CI and S-Br and CI is above Br therefore, Br is more electronegativity. S-CI is more polar than S-Br Se is the common to the Se – Cl and SE – Br, therefore, Se – Cl is more polar. The Se is lower than S in periodic table which has more atomic number shows a decrease in electronegativity . Se - Cl more polar ### Q7. Practice exercise page 311 The dipole moment of chlorine monofluoride CIF $_{(g)}$, is 0.88 D. The length of the molecule is 1.63 Å. - a) Which atom is expected to have the partial negative charge? - b) What is the charge on that atom in unit of e. #### Answer: a) Fluoride above the chloride in periodic table, it becomes more electronegativity. b) $$\mu = Q \times r$$ $1 D = 3.34 \times 10^{-30} \text{ C-m}$ $0.88 D = (0.88 D) \times (3.34 \times 10^{-30}) / (1 D) = 3.9392 \times 10^{-30} \text{ C-m}$ $Q = (2.9392 \times 10^{-30}) / (1.63 \times 10^{-10}) = 1.803 \times 10^{-20} \text{ C}$ $1 e = 1.6 \times 10^{-19} \text{ C}$ Dipole of CIF in $e = (1.803 \times 10^{-20}) (1 e / 1.6 \times 10^{-19}) = 0.113 e$ ### 8.17 Write the electron configuration for each following ions, and determine which one possess noble-gas configuration. a) Sr^{2+} , b) Ti^{2+} , c) Se^{2+} , d) Ni^{2+} , e) Br^{-} , f) Mn^{3+} . ### Answer: a) Sr (38) [Ar] $$4S^2 ext{ } 3d^{10} ext{ } 4p^6 ext{ } 5S^2$$ $$Sr^{2+}(36) [Ar] 4S^2 ext{ } 3d^{10} ext{ } 4p^6 ext{ } = ext{ } [Kr]$$ b) Ti (22) [Ar] $4S^2 ext{ } 3d^2 ext{ } Ti^{2+}(20) ext{ } [Ar] 4S^2$ c) Se(34) [Ar] $4S^2 ext{ } 3d^{10} ext{ } 4p^4 ext{ } Se^{2+}(32) ext{ } [Ar] 4S^2 ext{ } 3d^{10} ext{ } 4p^2$ d) Ni (28) [Ar] $4S^2 ext{ } 3d^8 ext{ } Ni^{2+}(26) ext{ } [Ar] 4S^2 ext{ } 3d^6$ e) Br (35) [Ar] $4S^2 ext{ } 3d^{10} ext{ } 4p^5 ext{ } Br^-(36) ext{ } [Ar] 4S^2 ext{ } 3d^{10} ext{ } 4p^6 ext{ } = ext{ } [Kr]$