Jordan University of Science & Technology Department of Applied Chemical Sciences CH 103- First | Student's Name: Student's No.: Section: | | | | | | | | | | | Instructor | | | | | ie; | - ~ | ا ا | | |---|--|---|--|--------------|--|--|-----------------------------------|----------------------------|-----------------------------------|-------|--|---------------------------------|-------------------------|-------------------------|--------------------------------------|--|--------------------------------|---|---| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | | B | C | OF. | P | D | B | P | P | C | C | E | C | В | E | A | A | B | E R | A | B | | 1 H 1.0 3 Li 6.9 11 Na 23.1 19 K 39. | B 9. 1 M 0 24 C C . (C | en 1 lation 0.93 | 21
Sc
45
20 mole | | 23
V
50.9
Cu ₃ F
is in cu ₃ Fes | 24
Cr
52.0
FeS ₃ (sexces
S ₃ is is | 25
Mn
54.9
and
s) + 7 | 10.0
'O ₂ (g | 8 C 8 58 58 mole | of C | Ni
8.7 6
0 ₂ are
s) + 2 | 3.5 6
mixe
2FeO
B. 3.5 | ed ar
(s) +
5 mol | nd all
6SO
e of 0 | 14
Si
28.1
32
Ge
72.6 | 15
P
31.0
33
As
74.9
to re | 16
S
32
34
S
79 | 0 19
0 19
0 39
4 3
e 10
0 79 | 17 18 CI Ar 5.5 40.0 35 36 Kr 9.9 83.8 rding to the | | 2. | A c | omm | on E | | h set | of u | nits f | | pres | sing | | eration | | (التسار | is m | | (hou
m/hr | | The base SI E. cm/s | | 3. | The | ere s | hould | be_ | | 12.03 | sig | | | | | | | er to | the fo | llowi | ng c | omp | utation. | | | | | | | | | | | 395) ÷ 2.500
2.500 Q. 3 | | | | | D. 4 E. | | | E. 5 | | | | | | - | | lg rea | | | _ | of H | l ₂ O a | ccord | ding t | o: Mg | g(s) + | - 2H ₂ | O(I) - | → Mg | (OH) |) ₂ (s) | + H ₂ (g) | | 4. | | ne mass in grams of hydrogen (H ₂) expected to be produced is | | | | | | | | | | E. 0.204 | | | | | | | | | 5. | If O | | .092 g H_2 is produced from the above experiment, what is the percentage yield? B. 5.7×10^2 C. 1.9×10^2 D. 42 E. 45 | | | | | | | | | | | | E. 45 | | | | | | 6. | | A sample of CHF ₃ (M. M = 70 g/mol) with a A. 2.2×10^{23} B. 4.9×10^{23} | | | | | | | | | nass of 19 g contains
C. 3.3 x 10 ²⁴ | | | | 2001 | D. 38 | | | of F.
E. 9.5 | | 7. | Α. | | freezi | folloring po | _ | | | | hest | B. | perat
5 °C
A an | | | | | C. | 25 ° | F | | | 8. | nass of t | he cube is | 25.5 g. | | | | | | | | | | | |------|---|-------------------------|-----------------|--|----------------------|---------------------------------------|----------------|-------------------------------------|-----------------------|--|--|--|--| | | Which of the following is I | | Rh | Cu | Nb | V | - 1 | Zr | | | | | | | | | y(g/cm ³) | 12.4 | 8.96 | 8.63 | 6.11 | | | | | | | | | | A. Cu | B. Rh | | C. N | | D. V | | 6.51
E. Zr | | | | | | | | | H-SXI | | 0.14 | 10210 | D. V | | E. ZI | | | | | | | 9. | Al reacts with a | certain ele | ment to fo | rm a comp | ound with | the general | formula | AIX Wha | at would | | | | | | | the most likely fo | rmula be fo | or the com | pound form | ed between | en potassiun | n (K) and | element | X? | | | | | | | A. K ₂ X | B. K | (2 | C) K | 3X | D. K ₃ X ₂ | () | E. KX | | | | | | | - 10 | | | | | | | | | | | | | | | 10. | | ction: 4Fe(| $(s) + 3O_2(g)$ | \rightarrow 2Fe ₂ (| $O_3(s)$. How | many mole | cules o | f oxygen | (O ₂) are | | | | | | | required to react completely with 1600 atoms of iron(Fe)? | | | | | | | | | | | | | | | A. 600 B.1070 C.1200 D. 300 E. 535 | | | | | | | | | | | | | | 11. | The number of pr | rotons nei | itrone and | electrons in | Ca ²⁺ are | | and | | 1 | | | | | | 具点 | A. 20, 40, 20 | B 20 | 20 20 | C 20 | 20 22 | D. 20, 40, 1 | | | | | | | | | | | | , =0, =0 | 0.20 | , 20, 22 | D. 20, 40, 1 | 5 | (E) 20, 20 |), 10 | | | | | | 12. | In an experiment | a student | measured | the density | of a piece | e of metal r | Till | D :: / | 7 13 7 | | | | | | | 12. In an experiment a student measured the density of a piece of metal and got the data shown to the right. If the actual density of the metal | | | | | | | | g/mL) | | | | | | | is 5.00 g/mL, then the student is | | | | | | | | | | | | | | | A. precise B. accurate C. accurate and precise D. poither accurate per precise 3 | | | | | | | |) | | | | | | | accurate and | orecise | D. neithe | er accurate | nor precis | e, F | 4 | 5.01 | | | | | | | 40 | 100/1 5 11 | | | | | L | | 5.02 | | | | | | | 13. | 400 mL of ethan | ol stock s | olution wa | s diluted to | | | 200 M of | ethanol so | olution, | | | | | | | the concentration A. 0.400 | | | | IV | 1. | MZ. | | | | | | | | | A. 0.400 | B) 0.2 | 200 | C. 2. | 00 | D. 1. | 60 | E. 4.00 | | | | | | | 14. | How many mL of | a 0.827 M | KOH solu | tion are rec | uired to no | رين المرادل
eutralize 35. | 0 ml of | 0 464 M F | LSO 2 | | | | | | | A. 35.0 | B. 1.1 | 12 | C. 25 | | D. 62 | | (E)39.3 | 2004. | | | | | | | | | | | | | , | | | | | | | | (15) | How many mL o | f H ₂ O show | uld be add | ed to 10.0 | grams of | acetic acid | (d = 1.3) | g/mL) in | order to | | | | | | 0 | prepare 2.0 M so | lution of ac | cetic acid?(| M. M of ac | etic acid = | = 60 g/mol) | | *** | _ # | | | | | | | A. 76 mL | B. 83 | mL | C. 45 | mL | D. 50 |) mL | E. 1000 | mL , | | | | | | 16 | Mhish of the fello | | | - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 | | | | | | | | | | | 16. | Which of the follo | owing woul
O | d nave to | gain one e
Na S | | order to ach | nieve a r | oble gas | electron | | | | | | | configuration? (A) Br | | D 0 | 0- | E M. 0 0 | | | | | | | | | | | (A, D) | B. Mg | | C. Na | 4 | D. O | , Se | E. Mg, O | , Se | | | | | | 17. | The point in a titra | ation at wh | ich the ind | icator color | changes i | s called the | | | | | | | | | | A. setpoint | | B) endpo | oint | | dard point | | · an | | | | | | | | D. indicator point | | · . | alent point | | - pont | 18. | Acceleration due | to gravi | ty of a fr | ee-falling of | object is | 9.8 m/s ² . | Express | this in | nm/ms ² | | | | | | | (nanometers/milli | second2). | | | | | | | | | | | | | | A. 9.8×10^{-9} | B. 9.8 | 3×10^3 | C. 9. | 8×10^{-6} | D. 9.8× | 106 | (E) 9.8× | 10-3 | | | | | | | | | | | 07.10 | D . 7.07 | 10 | (L) 7.0 x. | 10 | | | | | | 19. | The molar mass | of Ca(CIO | 4)2.6H2O is | W CO | | | | | | | | | | | | (A) 347 g/mol | B. 26 | 7 g/mol | C. 17 | 8 g/mol | D. 232 g/r | nol | E. 248 a | /mol | | | | | | | 8 - 3 3 3 | | | | | | | | | | | | | | 20. | Consider the read | ction: Co(1 | VH3)xCl3(ac |) + xHCl(a | $HNx \leftarrow (p$ | 4 ⁺ (aq) + Co ³ | †(aq) + (| x + 3)Ql.(a | q) | | | | | | | Assume you use | 21.03 mL | of 1.500 M | HCl to rea | ct complet | tely with 1.58 | 30.g of C | O(NH ₃) _x CI | 3. What | | | | | | | is the value of x | | | | | | | • | | | | | | | | A. 2 | B. 3 | | C.4 | | D. 6 | | E. 5 | | | | | |