The Digestive System

Dr. Othman Al-Shboul Department of Physiology & Biochemistry College of Medicine-JUST

Digestive System = Digestive Tract + Accessory Organs

Digestive/Gastrointestinal (GI) tract organs:

- ✓ mouth
- ✓ pharynx (throat)
- ✓ esophagus
- ✓ stomach
- ✓ small intestine (duodenum, jejunum, & ileum)
- ✓ large intestine (cecum, appendix, colon, & rectum ascending color
- 🗸 anus

Accessory digestive organs:

- ✓ salivary glands
- ✓ exocrine pancreas
- ✓ biliary system (liver and gallbladder)

Primary function of the digestive system is to bring essential nutrients into the internal environment so they are available to cells of the body

- 1. Motility: physically breaks down large food material & moves food along the tract
- 2. Secretion: digestive <u>enzymes</u> that allow chemical digestion
- 3. **Digestion**: breakdown of complex nutrients into simple nutrients
- 4. Absorption: taking nutrients into the internal environment through the mucosa

1. **MOTILITY**: the digestive tract's muscular contractions

Two types:

- *i.* **Propulsive movements:**
 - Propel/push the contents forward through the digestive tract (oral->anal)

ii. Mixing movements:

- <u>Facilitate digestion</u> by mixing food with the digestive juices
- <u>Facilitate absorption</u> by exposing all parts of the intestinal contents to the absorbing surfaces of the digestive tract
- The <u>ends</u> of the tract: motility involves skeletal muscle

2. SECRETION:

- Digestive juices consist of water, electrolytes, enzymes, bile salts, and mucus.
- Energy-dependent process
- Requires neural/hormonal stimulation
- Reabsorbed back into the blood

3. **DIGESTION:**

Biochemical <u>breakdown</u> of the structurally complex foodstuffs of the diet into smaller, absorbable units by the enzymes produced within the digestive system.

Carbohydrates:

Polysaccharides/disaccharides \rightarrow monosaccharides

Proteins:

```
Polypeptides \rightarrow amino acids
```

Fat:

Triglycerides \rightarrow monoglycerides and free fatty acids

Hydrolysis

4. ABSORPTION:

The small absorbable units that result from digestion, along with water, vitamins, and electrolytes, are <u>transferred</u> from the digestive tract lumen into the blood or lymph.

Most absorption occurs in the <u>small intestine</u>

The Digestive Tract Wall

□ From the innermost layer outward:

- Mucosa, protective role, secretion and absorption, contains exocrine, endocrine, & epithelial cells.
- Submucosa, thick layer of connective tissue, gives GI tract distensibility & elasticity, contains blood and lymph vessels

no Muscularis externa,

- inner circular layer: contraction constricts/decreases the diameter of the lumen
- outer longitudinal layer: contraction shortens the tube
- Serosa, outer connective tissue covering, secretes a watery, slippery fluid; lubricates and prevents friction with surrounding organs

Regulation of GI function

Autonomous Smooth Muscle Function

Sheets of smooth muscle cells are connected by gap junctions (i.e., functional syncytium)

- Tonic smooth muscle: contraction is maintained for prolonged periods of time. e.g. fundus, sphincters
- Phasic smooth muscle: "twitch-like" contraction evoked by action potentials. e.g. antrum, esophagus, intestine

Autonomous Smooth Muscle Function

- Display rhythmic, spontaneous variations in membrane potential – slow-wave potentials (basic electrical rhythm (BER) or pacesetter potential)
- Slow waves are generated by Interstitial Cells of Cajal "ICC" (pacemaker cells)

Neural Regulation of GI function

- Intrinsic nerve plexuses: 1.
- Digestive tract has its own intramural ("within-wall") nervous system

ENS

Contains as many neurons as the spinal cord

- 2 major networks:
- Submucous plexus
- Myenteric plexus

Extrinsic nerves: 2.

- Sympathetic & parasympathetic of ANS
- Either directly on the smooth muscle and glands or indirectly via ENS \checkmark

Mouth

- Muscular lips:
 - Procure, guide, and contain the food in the mouth
 - Important in speech
 - Sensory receptor
- □ The palate:
 - ✓ Separates the mouth from the nasal passages
 - Uvula; sealing off the nasal passages during swallowing
- □ The tongue:
 - The floor of the oral cavity
 - Skeletal muscle
 - Guiding food within the mouth during chewing and swallowing
 - ✓ Role in speech
 - Contains taste buds

OPENStax "BIOLOGY"

Mouth

The motility of the mouth that involves the slicing, tearing, grinding, and mixing of ingested food by the **teeth**

- ✓ Grinding and breaking food up into smaller pieces to facilitate swallowing
- ✓ Mixing food with saliva
- Stimulating the <u>taste</u> buds; sensation of taste & reflexly increases salivary, gastric, pancreatic, and bile secretion
- ✓ After chewing, the food (now called a <u>bolus</u>) is swallowed.
- Voluntary, but mostly a <u>rhythmic reflex</u>; activation of the skeletal muscles of the jaws, lips, cheeks, and tongue in response to the pressure of food against the oral tissues

Mouth

- Components:
 - ✓ 99.5% H₂0
 - 0.5% electrolytes and proteins (*amylase, mucus, & lysozyme*)
- Functions:
 - ✓ Begins <u>digestion of carbohydrate</u> (polysaccharide → maltose)
 - o Gastric acid (in the stomach) inactivates amylase, except in the center of the food mass
 - Facilitates swallowing, providing <u>lubrication</u> through mucus
 - <u>Antibacterial</u> action via *lysozyme* & rinsing effect
 - <u>Solvent</u> for molecules that stimulate the taste buds
 - Aids speech
 - ✓ Oral hygiene (helping keep the mouth and teeth clean)
 - Contains <u>bicarbonate buffers</u>, which neutralize acids
 - Entirely under neural regulation (<u>no</u> hormonal regulation), parasympathetic: prompt and abundant flow of <u>watery</u> saliva, rich in enzymes. sympathetic: much smaller volume, <u>thick</u> saliva, rich in mucus
- No absorption takes place in the mouth
- * Nitroglycerin

Pharynx & Esophagus

- Swallowing (deglutition): the process in the human or animal body that makes something pass from the mouth, to the pharynx, and into the esophagus
- ALL or NON: initiated voluntarily, but once begun it cannot be stopped
 - <u>bolus</u> distension stimulates pressure receptors, mediated by the intrinsic nerve plexuses at the level of the distension.
- □ Two stages:
 - 1. Oropharyngeal stage
 - 2. Esophageal stage

Swallowing Stages

1. Oropharyngeal stage

Swallowing Stages

2. Esophageal stage

- Starts after food passes pharyngoesophageal sphincter
- Esophageal secretion is entirely mucus (for lubrication)
- Peristalsis starts here

C Mayo Foundation for Medical Education and Research. All rights reserved.

Esophageal Peristalsis

progressive motility that produces forward movement of matter along the GI tract

Swallowing Stages

Stomach

Gastric Motility

1. Gastric filling & storage

Stomach volume; 50-1000mL

<u>Receptive relaxation:</u>

- Increase in stomach (Fundus) volume with little change in tension in its walls and little rise in intragastric pressure upon food reception
- Stimulated by eating and is mediated by the vagus nerve
- Gastric storage takes place in the fundus of the stomach (tonic contraction)

Gastric Motility

2. Gastric mixing & emptying

- Gastric mixing takes place in the thick-muscled <u>antrum</u> as a result of vigorous peristaltic contractions against the almost closed pyloric sphincter
- The amount of <u>chyme</u> that escapes into the duodenum with each peristaltic wave before the pyloric sphincter tightly closes depends largely on the strength of peristalsis

Chyme is what we call partly digested food as it leaves the stomach; it's full of good stuff...yum!

Gastric Motility

Factors Regulating Gastric Motility and Emptying

FACTORS	EFFECTS ON GASTRIC MOTILITY AND EMPTYING
Within the Stomach	
Volume of chyme	Increased volume stimulates motility and emptying
Degree of fluidity	Increased fluidity allows more rapid emptying
Within the Duodenum	
Presence of fat, acid,	These factors in the duodenum inhibit further gastric
hypertonicity, or distension	motility and emptying until the duodenum has coped with factors already present
Outside the Digestive System	
Emotion	Stimulates or inhibits motility and emptying
Intense pain	Inhibits motility and emptying

- Vomiting (or emesis): the forceful expulsion of gastric contents out through the mouth
- □ Vomiting is coordinated by a **vomiting center** in the medulla.
- The stomach, the esophagus, and associated sphincters are all <u>relaxed</u> during vomiting
- The major force for expulsion comes from contraction of the respiratory muscles; (diaphragm & abdominal muscles)
- □ Vomiting begins with a <u>deep inspiration</u> and <u>closure of the glottis</u>.

Gastric Secretion

The Stomach Mucosa and the Gastric Glands

TABLE 15-3 The Stomach Mucos	LE 15-3 omach Mucosa and the Gastric Glands				
TYPE OF SECRETORY CELL	PRODUCT SECRETED	STIMULI FOR SECRETION	FUNCTION(S) OF SECRETORY PRODUCT		
Exocrine cells					
Mucous cells	Alkaline mucus	Mechanical stimulation by contents	Protects mucosa against mechanical, pepsin, and acid injury		
Chief cells	Pepsinogen	ACh, gastrin	When activated, begins protein digestion		
Parietal cells	Hydrochloric acid	ACh, gastrin, histamine	Activates pepsinogen, breaks down connective tissue, denatures proteins, kills micro-organisms		
	Intrinsic factor		Facilitates absorption of vitamin B ₁₂		

▲ TABLE 15-3 The Stomach Mucosa and the Gastric Glands					
TYPE OF SECRETORY CELL	PRODUCT SECRETED	STIMULI FOR SECRETION	FUNCTION(S) OF SECRETORY PRODUCT		
Endocrine/Paracrine cells					
Enterochromaffin- like (ECL) cells	Histamine	ACh, gastrin	Stimulates parietal cells		
G cells	Gastrin	Protein products, ACh	Stimulates parietal, chief, and ECL cells		
/ D cells	Somatostatin	Acid	Inhibits parietal, G, and ECL cells		

Pepsinogen Activation & Protein Digestion

Protein digestion starts in stomach

Phases of Gastric Secretion

Protecting Stomach Lining From Gastric Secretions

Pancreas

34

Pancreas is a Mixture of Exocrine and Endocrine Tissue

- Secretes into the duodenum
- 1. Pancreatic enzymes
 - ✓ By the acinar cells
- 2. Aqueous alkaline solution
 - ✓ By the duct cells
 - ✓ Rich in sodium bicarbonate (NaHCO₃)
 - to allow optimal functioning of the pancreatic enzymes
 - to prevent acid (from stomach) damage to the duodenal mucosa

Pancreatic Enzymes

1. Proteolytic enzymes

- <u>trypsin</u>, <u>chymotrypsin</u>, <u>elastase</u>, <u>carboxypeptidase</u>
- ✓ Secreted in an inactive form
- Trypsin inhibitor

2. Pancreatic amylase:

- Secreted in the pancreatic juice in an active form
- ✓ Polysaccharides → disaccharide maltose

3. Pancreatic lipase

- Secreted in its active form
- The <u>only</u> enzyme secreted throughout the entire digestive system that can digest fat
- Triglycerides monoglycerides + free fatty acids

Regulation of Exocrine Pancreatic Secretion

Liver Blood Flow

The Liver is Organized into Functional Units Known as Lobules

Liver lobules: hexagonal arrangements of tissue surrounding a central vein

The Liver is Organized into Functional Units Known as Lobules

Each hepatocyte is in contact with a sinusoid on one side and a bile canaliculus on the other side

Bile constituents:

- 1. Bile salts (derivatives of cholesterol)
- 2. Cholesterol
- 3. Lecithin
- 4. Bilirubin (heme waste product excreted in the bile)
- No digestive enzymes
- □ Gallbladder stores and concentrates bile (5-10 times)
- CCK stimulates contraction of the gallbladder and relaxation of the sphincter of oddi; so releasing bile into duodenum

All in an aqueous alkaline fluid (added by the duct cells) similar to the pancreatic NaHCO₃

1. Detergent Action of Bile Salts Facilitates Fat Digestion

Bile salts' ability to convert large fat globules into a lipid emulsion consisting of many small fat droplets suspended in the aqueous chyme, thus increasing the surface area available for attack by pancreatic lipase.

Bile salt

2. Bile Salts Facilitate Fat Absorption Through Formation of Micelles

- Micelles are lipid molecules that arrange themselves in a spherical form in aqueous solutions
- Can dissolve waterinsoluble substances in their lipid soluble cores
- Vehicle for carrying water insoluble substances (monoglycerides, free fatty acids, & fat-soluble vitamins) through the watery luminal contents

Cholesterol

Small Intestine

Small Intestine Motility

1. Segmentation:

- So Oscillating, ring-like contractions of the circular smooth muscle along the small intestine's length
 - Between the contracted segments are relaxed areas containing a small bolus of chyme

2. Peristalsis

Progressive motility
that produces forward
movement of matter
along the GI tract

Small Intestine Motility

3. The migrating motility complex

- Between-meal (interdigestive) motility
- Consists of <u>weak, repetitive peristaltic waves</u> that move a short distance down the intestine before dying out.
- □ Starts in the stomach and migrates down the intestine
- Each new peristaltic wave is initiated at a site a little farther down the small intestine
- Intestinal housekeeper; sweeping any remnants of the preceding meal plus mucosal debris and bacteria forward toward the colon
- Regulated by the hormone motilin

Gastroileal Reflex

- Increase in ileal motility and opening of the ileocecal valve when food enters the empty stomach
- ⁵⁰ Mediated by gastrin

Small Intestine Secretions

Brush border enzymes

- nserted into microvilli covering
- ⁵⁰ Enzymatic digestion occurs at surface rather than in the lumen
 - ✓ Enterokinase [activation of trypsin]
 - ✓ **Disaccharidases** (maltase, sucrase, and lactase) [disacharides→monosccharides]
 - ✓ Aminopeptidases [protein digestion]

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 18.1 Brush Border Enzymes Attached to the Cell Membrane of Microvilli in the Small Intestine

Category	Enzyme	Comments
Disaccharidase	Sucrase	Digests sucrose to glucose and fructose; deficiency produces gastrointestinal disturbances
	Maltase	Digests maltose to glucose
	Lactase	Digests lactose to glucose and galactose; deficiency produces gastrointestinal disturbances (lactose intolerance)
Peptidase	Aminopeptidase	Produces free amino acids, dipeptides, and tripeptides
	Enterokinase	Activates trypsin (and indirectly other pancreatic juice enzymes); deficiency results in protein malnutrition
Phosphatase	Ca ²⁺ , Mg ²⁺ -ATPase	Needed for absorption of dietary calcium; enzyme activity regulated by vitamin D
R	Alkaline phosphatase	Removes phosphate groups from organic molecules; enzyme activity may be regulated by vitamin D

Small Intestine Absorption

- Most absorption occurs in the duodenum and jejunum
- ⁵⁰ Adaptations that increase the small intestine's surface area:

circular folds \rightarrow villi \rightarrow microvilli

Na⁺ & H₂0 Absorption

- Passive diffusion of Na⁺ can occur between the intestinal epithelial cells through the leaky tight junctions
- Energy dependent movement of Na⁺ through the cells (driven by the Na⁺-K⁺ ATPase pumps located at the cells' basolateral borders)
- Chloride passively follows down the electrical gradient created by Na⁺ absorption and can be actively absorbed as well if needed.
- Water is reabsorbed passively down the osmotic gradient produced by active reabsorption of Na⁺

Carbohydrate & protein absorption

So Glucose, Galactose, and amino acids → linked to Na⁺secondary active transport

⁵⁰ Fructose is absorbed into the blood solely by facilitated diffusion

Carbohydrate Absorption

Protein Absorption

© 2013 Pearson Education, Inc.

(1) Proteins and protein fragments are digested to amino acids by pancreatic proteases (trypsin, chymotrypsin, and carboxy- peptidase), and by brush border enzymes (carboxypeptidase, aminopeptidase, and dipeptidase) of mucosal cells.

(2) The amino acids are then absorbed by active transport into the absorptive cells, and move to their opposite side.

3 The amino acids leave the villus epithelial cell by facilitated diffusion and enter the capillary via intercellular clefts.

Fat Absorption

Fig. 26-21. Absorption of fats. Fats such as triglycerides are chemically digested within emulsified fat droplets, yielding fatty acids, monoglycerides, and glycerol (*left*). Fatty acids and other lipid-soluble compounds (such as cholesterol) leave the fat droplets in small spheres coated with bile salts (micelles). When a micelle reaches the plasma membrane of an absorptive cell, individual fat-soluble molecules diffuse directly into the cytoplasm. The endoplasmic reticulum of the cell resynthesizes fatty acids and monoglycerides into triglycerides. A Golgi body within the cell packages the fats into water-soluble micelles called chylomicrons, which then exit the absorptive cell by exocytosis and enter a lymphatic lacteal. *IF*, Interstitial fluid.

Mosby items and derived items @ 2010, 2007, 2003 by Mosby, Inc., an affiliate of Elsevier Inc.

Vitamin Absorption

- □ Water-soluble vitamins (A, D, E, & K): passively with water
- Fat-soluble vitamins (B & C): carried in micelles & absorbed passively
 - Vitamin B12: needs gastric intrinsic factor for absorption

Large Intestine

Large Intestine

- SoTo store feces before
defecation
- Absorption of H₂O, salts, & vitamin K (no villi)
- Secretes alkaline (NaHCO₃) mucus solution

Large Intestine Movements

Haustral contractions

- Slow and non-propulsive, shuffle the contents in a back-and-forth mixing movement
- Similar to small-intestine segmentations but occur much less frequently

Mass movements

- So Stimulated by presence of food in stomach (gastrocolic reflex)
- ⁵⁰ Push the colonic contents into the distal part of the large intestine
- 50 3 to 4 times a day

Defecation Reflex

Gastrointestinal Hormones

- 50 Gastrin
- 50 Secretin
- So CCK

GASTRIN

- ⁵⁰ Release is stimulated by protein in the stomach
- ⁵⁰ Functions:
 - 1. \uparrow secretion of HCI and pepsinogen.
 - 1 gastric motility, 1 ileal motility, relaxes ileocecal sphincter, & induces mass movements
- Secretion is inhibited by an accumulation of acid in the stomach/duodenum

SECRETIN

^{SO} Secretion is stimulated by presence of acid in the duodenum

- ⁵⁰ Functions:
 - 1. inhibits gastric emptying
 - 2. inhibits gastric secretion
 - 3. stimulates the pancreatic duct cells to produce a large volume of aqueous $NaHCO_3$ secretion,
 - 4. stimulates secretion by the liver of a NaHCO₃-rich bile,

CCK

- Release is stimulated by chyme in duodenum (esp. fat and to a lesser extent protein products)
- so Functions:
 - 1. inhibits gastric motility and secretion,

- 2. stimulates the pancreatic acinar cells to increase secretion of pancreatic enzymes,
- 3. causes contraction of the gallbladder and relaxation of the sphincter of Oddi
- plays a key role in satiety (the sensation of having had enough to eat)

GIP - glucose-dependent insulinotropic peptide

Stimulates insulin release by the pancreas in anticipation of absorption of the meal (feed-forward mechanism)

∞ Esp. glucose in the duodenum ↑ GIP secretion.

Mosby items and derived items © 2007, 2003 by Mosby, Inc.

Mosby items and derived items © 2007, 2003 by Mosby, Inc.

Mosby items and derived items © 2007, 2003 by Mosby, Inc.

The END