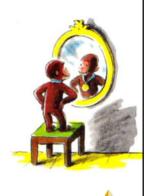
Today's Lecture

- ✓ Announcements
- ✓ Units of in Measurement


Announcements

- Office hours
 - Mon, Wed, 11:30-12:30 am
 - Sun, Tue, Thu 12:00-1:00 pm
- Reading
 - Chapter 1, focus on Sections (1.4), (1.5) and (1.6)
- Suggested Problems
 - -23,25,27,29,31,33,35,37,39,41,43,45,47,49,51,53, 59,61,67,69

Things you are proud of...

• ??????????????????????

Units of Measurement

SI Units

Physical Quantity	Name of Unit	Abbreviation
Mass	Kilogram	kg
Length	Meter	m
Time	Second	s^a
Temperature	Kelvin	K
Amount of substance	Mole	mol
Electric current	Ampere	A
Luminous intensity	Candela	cd

^aThe abbreviation sec is frequently used.

- Système International d'Unités
- A different base unit is used for each quantity.

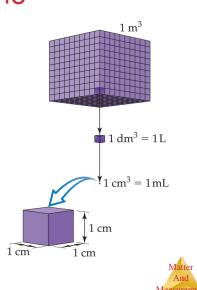
Metric System

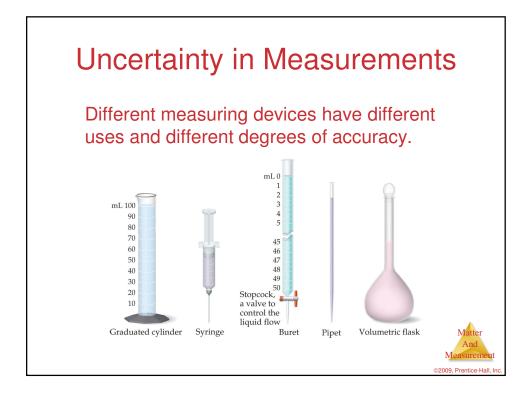
Prefixes convert the base units into units that are appropriate for the item being measured.

Prefix	Abbreviation	Meaning	Example
Giga	G	10^9 10^6	1 gigameter (Gm) = 1×10^9 m
Mega Kilo	M k	10^{3}	1 megameter (Mm) = 1×10^6 m 1 kilometer (km) = 1×10^3 m
Deci	d	10^{-1}	1 decimeter (dm) = 0.1 m
Centi	С	10^{-2}	1 centimeter (cm) = 0.01 m
Milli	m	10^{-3}	1 millimeter (mm) = 0.001 m
Micro	μ^{a}	10^{-6}	1 micrometer (μ m) = 1 × 10 ⁻⁶ m
Nano	n	10^{-9}	1 nanometer (nm) = 1×10^{-9} m
Pico	p	10^{-12}	1 picometer (pm) = 1×10^{-12} m
Femto	f	10^{-15}	1 femtometer (fm) = 1×10^{-15} m

 $^{^{\}rm a}{\rm This}$ is the Greek letter mu (pronounced "mew").

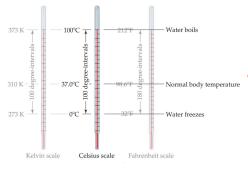
Sample Exercise 1 Using Metric Prefixes

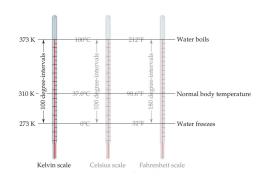

What is the name given to the unit that equals (a) 10^{-9} gram, (b) 10^{-6} second, (c) 10^{-3} meter?


Practice Exercise

(a) What decimal fraction of a second is a picosecond, ps? (b) Express the measurement 6.0×10^3 m using a prefix to replace the power of ten. (c) Use exponential notation to express 3.76 mg in grams.

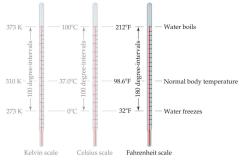
Volume


- The most commonly used metric units for volume are the liter (L) and the milliliter (mL).
 - A liter is a cube 1 dm long on each side.
 - A milliliter is a cube 1 cm long on each side.



- In scientific measurements, the Celsius and Kelvin scales are most often used.
 - The Celsius scale is based on the properties of water.
 - 0°C is the freezing point of water.
 - 100°C is the boiling point of water.

©2009, Prentice-Hall, Inc.


Temperature

- The Kelvin is the SI unit of temperature.
- It is based on the properties of gases.
- There are no negative Kelvin temperatures.
- $K = {}^{\circ}C + 273.15$

Temperature

- The Fahrenheit scale is not used in scientific measurements.
- $^{\circ}F = 9/5(^{\circ}C) + 32$
- $^{\circ}C = 5/9(^{\circ}F 32)$

Sample Exercise 2 Converting Units of Temperature

If a weather forecaster predicts that the temperature for the day will reach 31 °C, what is the predicted temperature (a) in K, (b) in °F?

Practice Exercise

Ethylene glycol, the major ingredient in antifreeze, freezes at -11.5°C . What is the freezing point in (a) K, (b) ° F?

Density

Density is a physical property of a substance.

$$d = \frac{m}{V}$$

Sample Exercise 3 Determining Density and Using Density to Determine Volume or Mass

- (a) Calculate the density of mercury if 1.00×10^2 g occupies a volume of 7.36 cm³.
- (b) Calculate the volume of 65.0 g of the liquid methanol (wood alcohol) if its density is 0.791 g/mL.
- (c) What is the mass in grams of a cube of gold (density = 19.32 g/cm³) if the length of the cube is 2.00 cm?

Practice Exercise

- (a) Calculate the density of a 374.5-g sample of copper if it has a volume of 41.8 cm³.
- **(b)** A student needs 15.0 g of ethanol for an experiment. If the density of ethanol is 0.789 g/mL, how many milliliters of ethanol are needed?
- (c) What is the mass, in grams, of 25.0 mL of mercury (density = 13.6 g/mL)?

Next Lecture

- Uncertainty in Measurements
- Dimensional Analysis
 - Chapter 1
 - focus on Sections (1.4) and (1.5)and (1.6)

