Today's Lecture

\checkmark Announcements
\checkmark Quizzes
\checkmark Dimensional Analysis

Announcements

- Office hours
- Mon, Wed, 11:30-12:30 am
- Sun,Tue,Thu 12:00-1:00 pm
- Reading
- Chapter 1, focus on Sections (1.4), (1.5) and (1.6)
- Suggested Problems
-

23,25,27,29,31,33,35,37,39,41,43,45,47,49,51,53, 59,61,67,69

Quizzes

Quiz 1: How many significant figures should be shown for the calculation?

- 1
- 2
- 3
$\frac{1.25+0.45}{2.734}$
- 4
- 5

Quiz 2
 How many significant figures are in the measured number 0.082060 ?

a. 3
b. 4
c. 5
d. 6

Quiz 3
 6.03 grams +7.1 grams $=$?

a. 13 grams
b. 13.1 grams
c. $\quad 13.13$ grams
d. 13.130 grams

Quiz 4

6.03 grams / 7.1 milliliters = ?
a. 0.8 grams/milliliter
b. 0.85 grams $/$ milliliter
c. 0.849 grams/milliliter
d. 0.8492957 grams/milliliter

Dimensional Analysis

Dimensional Analysis

Use the form of the conversion factor that puts the sought-for unit in the numerator.

Givenunit $\times \frac{\text { desired unit }}{\text { givenunit }}=$ desired unit
\qquad

Dimensional Analysis

- For example, to convert 8.00 m to inches,
- convert m to cm
- convert cm to in.
$8.00 \mathrm{nX} \times \frac{100 \mathrm{etr}}{1 \mathrm{Mt}} \times \frac{1 \mathrm{in} .}{2.54 \mathrm{CHT}}=315 \mathrm{in}$.

Sample Exercise 1.9 Converting Units

If a woman has a mass of 115 lb , what is her mass in grams? (Use the relationships between units given on the back inside cover of the text.)

Practice Exercise

By using a conversion factor from the back inside cover, determine the length in kilometers of a $500.0-\mathrm{mi}$ automobile race.

Answer: 804.7 km

Practice Exercise

By using a conversion factor from the back inside cover, determine the length in kilometers of a $500.0-\mathrm{mi}$ automobile race.

Answer: 804.7 km

Sample Exercise 1.10 Converting Units Using Two or More Conversion Factors

The average speed of a nitrogen molecule in air at $25^{\circ} \mathrm{C}$ is 515 m / s. Convert this speed to miles per hour.

Practice Exercise

A car travels 28 mi per gallon of gasoline. How many kilometers per liter will it go?
Answer: 12 km/L

Sample Exercise 1.11 Converting Volume Units

Earth's oceans contain approximately $1.36 \times 10^{9} \mathrm{~km}^{3}$ of water. Calculate the volume in liters.

Practice Exercise

If the volume of an object is reported as $5.0 \mathrm{ft}^{3}$, what is the volume in cubic meters?
Answer: $0.14 \mathrm{~m}^{3}$

Sample Exercise 1.12 Conversions Involving Density

What is the mass in grams of 1.00 gal of water? The density of water is $1.00 \mathrm{~g} / \mathrm{mL}$.

Practice Exercise

The density of benzene is $0.879 \mathrm{~g} / \mathrm{mL}$. Calculate the mass in grams of 1.00 qt of benzene.
Answer: 832 g
©2009, Prentice-Hall, Inc.

Next Lecture

- Atoms, Molecules, and Ions
- Chapter 2
- focus on Sections

