Today's Lecture

\checkmark Announcements
\checkmark Quizzes
\checkmark Stoichiometry

- Avogadro's Number and Mole

Announcements

- Office hours
- Mon, Wed, 11:30-12:30 am
- Sun,Tue,Thu 11:00-12:00 pm
- Reading
- Chapter 3, Sections (3.4),(3.6) and (3.7)
- Suggested Problems
- 3.27,3.293.31,3.33, 3.35, 3.37,3.39,3.41,3.573.59, 3.61, 3.63,3.67,3.69, 3.71,3.73,3.77

The nucleus of an atom contains:

a. protons and neutrons.
b. protons and electrons.
c. electrons and neutrons.
d. air.

Atoms with identical atomic numbers but different mass numbers are called:

a. mutants.
b. isomers.
c. isotopes.
d. symbiots.

Atoms of elements on the left side of the periodic table tend to:
a. gain electrons.
b. lose electrons.
c. keep electrons.
d. share electrons.

A compound consisting of a metal and a nonmetal is called:

a. a molecular compound.
b. a mixed compound.
c. an empirical compound.
d. an ionic compound.

Positive ions are called:

a. positrons.
b. anions.
c. cations.
d. nucleons.

The elements located in group 7A of the periodic table are called:
a. alkali metals.
b. noble gases.
c. chalcogens.
d. halogens.

Anatomy of a Chemical Equation

$\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$

Anatomy of a Chemical Equation

$\mathrm{CH}_{4(g)}+2 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$

$\binom{1 \mathrm{C}}{4 \mathrm{H}}$
(4O)
$\left(\begin{array}{ll}1 & C \\ 2 & O\end{array}\right)$
$\left(\begin{array}{ll}2 & \mathrm{O} \\ 4 & \mathrm{H}\end{array}\right)$
Reactants appear on the left side of the equation.

Anatomy of a Chemical Equation

$$
\mathrm{CH}_{4(g)}+2 \mathrm{O}_{2(g)} \longrightarrow \mathrm{CO}_{2(g)}+2 \mathrm{H}_{2} \mathrm{O}_{(g)}
$$

$\binom{1 \mathrm{C}}{4 \mathrm{H}}$
(4O)
$\left(\begin{array}{ll}1 & C \\ 2 & \mathrm{O}\end{array}\right)$
$\left(\begin{array}{ll}2 & \mathrm{O} \\ 4 & \mathrm{H}\end{array}\right)$
Products appear on the
right side of the equation.

Anatomy of a Chemical Equation

$\mathrm{CH}_{4(g)}+2 \mathrm{O}_{2(g)} \longrightarrow \mathrm{CO}_{2(g)}+2 \mathrm{H}_{2} \mathrm{O}_{(g)}$

The states of the reactants and products are written in parentheses to the right of each compound.

Anatomy of a Chemical Equation

$\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$

$\binom{1 \mathrm{C}}{4 \mathrm{H}}$
(4O)
$\left(\begin{array}{ll}1 & C \\ 2 & O\end{array}\right)$
$\left(\begin{array}{ll}2 & \mathrm{O} \\ 4 & \mathrm{H}\end{array}\right)$
Coefficients are inserted to balance the equation.

Subscripts and Coefficients Give Different Information

Chemical symbol \qquad Composition
$\mathrm{H}_{2} \mathrm{O}$
One molecule of water:

Two H atoms and one O atom

Two molecules
Four H atoms and two O atoms
$2 \mathrm{H}_{2} \mathrm{O}$ Two mole

- Subscripts tell the number of atoms of each element in a molecule.

Subscripts and Coefficients Give Different Information

- Subscripts tell the number of atoms of each element in a molecule
- Coefficients tell the number of molecules.

Moles

©2009, Prentice-Hall, Inc.

Avogadro's Number

- 6.02×10^{23}
- 1 mole of ${ }^{12} \mathrm{C}$ has a mass of 12 g .

Molar Mass

- By definition, a molar mass is the mass of 1 mol of a substance (i.e., $\mathrm{g} / \mathrm{mol}$).
- The molar mass of an element is the mass number for the element that we find on the periodic table.
- The formula weight (in amu's) will be the same number as the molar mass (in $\mathrm{g} / \mathrm{mol}$).

Using Moles

Moles provide a bridge from the molecular scale to the real-world scale.

Mole Relationships

Name of Substance	Formula	Formula Weight (amu)	Molar Mass $(\mathrm{g} / \mathrm{mol})$	Number and Kind of Particles in One Mole
Atomic nitrogen	N	14.0	14.0	$6.02 \times 10^{23} \mathrm{~N}$ atoms Molecular nitrogen
N_{2}	28.0	28.0	$\left\{\begin{array}{c}6.02 \times 10^{23} \mathrm{~N}_{2} \text { molecules } \\ 2\left(6.02 \times 10^{23}\right) \mathrm{N} \text { atoms } \\ 6.02 \times 10^{23} \mathrm{Ag} \text { atoms } \\ \text { Silver }\end{array}\right.$	Ag
Silver ions	Ag^{+}	107.9	107.9	$6.02 \times 10^{23} \mathrm{Ag}^{+}$ions
Barium chloride	BaCl_{2}	208.2	107.9	$\left\{\begin{array}{c}6.02 \times 10^{23} \mathrm{BaCl}_{2} \text { units } \\ 6.02 \times 10^{23} \mathrm{Ba}^{2+} \text { ions } \\ 2\left(6.02 \times 10^{23}\right) \mathrm{Cl}^{-} \text {ions }\end{array}\right.$

${ }^{\text {and }}$ Recall that the electron has negligible mass; thus, ions and atoms have essentially the same mass.

- One mole of atoms, ions, or molecules contains Avogadro's number of those particles.
- One mole of molecules or formula units contains Avogadro's number times the number of atoms or ions of each element in the compound.

Sample Exercise 3.7 Estimating Numbers in Atoms

Without using a calculator, arrange the following samples in order of increasing numbers of carbon atoms: $12 \mathrm{~g}{ }^{12} \mathrm{C}, 1 \mathrm{~mol}$ $\mathrm{C}_{2} \mathrm{H}_{2}, 9 \times 10^{23}$ molecules of CO_{2}.

Practice Exercise

Without using a calculator, arrange the following samples in order of increasing number of O atoms: $1 \mathrm{~mol}_{\mathrm{H}_{2} \mathrm{O}, 1 \mathrm{~mol} \mathrm{CO}}^{2}$, 3×10^{23} molecules O_{3}.

Sample Exercise 3.8 Converting Moles to Atoms

Calculate the number of H atoms in 0.350 mol of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$.

Practice Exercise

Calculate the number of H atoms in 0.350 mol of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$.
©2009, Prentice-Hall, Inc.

Sample Exercise 3.9 Calculating Molar Mass

What is the mass in grams of 1.000 mol of glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$?

Practice Exercise

Calculate the molar mass of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$.
©2009, Prentice-Hall, Inc.

Next Lecture

- Stoichiometry
- Chapter 3
- Quantitative Information from balanced Equation
- Section 3.6

