Today's Lecture

\checkmark Announcements
\checkmark Quiz
\checkmark More Avogadro's Number and Mole
\checkmark Quantitative Information from balanced Equations

Announcements

- Office hours
- Mon, Wed, 11:30-12:30 am
- Sun,Tue,Thu 11:00-12:00 pm
- Reading
- Chapter 3, Sections (3.4),(3.6) and (3.7)
- Suggested Problems
- 3.27,3.293.31,3.33, 3.35, 3.37,3.39,3.41,3.573.59, 3.61, 3.63,3.67,3.69, 3.71,3.73,3.77
©2009, Prentice-Hall, Inc.

Sample Exercise 3.10 Converting Grams to Moles

Calculate the number of moles of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ in 5.380 g of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$.

Practice Exercise

How many moles of sodium bicarbonate $\left(\mathrm{NaHCO}_{3}\right)$ are in 508 g of NaHCO_{3} ?
©2009, Prentice-Hall, Inc.

Sample Exercise 3.11 Converting Moles to Grams

Calculate the mass, in grams, of 0.433 mol of calcium nitrate.

Practice Exercise

What is the mass, in grams, of (a) 6.33 mol of NaHCO_{3} and (b)
$3.0 \times 10^{-5} \mathrm{~mol}$ of sulfuric acid?
©2009, Prentice-Hall, Inc.

Sample Exercise 3.12 Calculating the Number of Molecules and Number of Atoms from Mass
(a) How many glucose molecules are in 5.23 g of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$? (b) How many oxygen atoms are in this sample?

Practice Exercise

(a) How many nitric acid molecules are in 4.20 g of HNO_{3} ?
(b) How many O atoms are in this sample?
©2009, Prentice-Hall, Inc.

Stoichiometric Calculations

Equation:	$2 \mathrm{H}_{2}(\mathrm{~g})$	+	$\mathrm{O}_{2}(\mathrm{~g})$	\longrightarrow	$2 \mathrm{H}_{2} \mathrm{O}(l)$
Molecules:	2 molecules H_{2}	+	1 molecule O_{2}	\longrightarrow	2 molecules $\mathrm{H}_{2} \mathrm{O}$
			(8)		
Mass (amu):	4.0 amu H 2	+	32.0 amu O2	\longrightarrow	36.0 amu $\mathrm{H}_{2} \mathrm{O}$
Amount (mol):	$2 \mathrm{~mol} \mathrm{H}_{2}$	+	$1 \mathrm{~mol} \mathrm{O}_{2}$	\square	$2 \mathrm{~mol} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$
Mass (g):	$4.0 \mathrm{~g} \mathrm{H}_{2}$	+	$32.0 \mathrm{~g} \mathrm{O}_{2}$	\longrightarrow	$36.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$

The coefficients in the balanced equation give the ratio of moles of reactants and products.

Stoichiometric Calculations

Stoichiometric Calculations

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

$1.00 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

Starting with 1.00 g of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \ldots$ we calculate the moles of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \ldots$ use the coefficients to find the moles of $\mathrm{H}_{2} \mathrm{O} \ldots$ and then turn the moles of water to grams.

Sample Exercise 3.16 Calculating Amounts of Reactants

 and ProductsHow many grams of water are produced in the oxidation of 1.00 g of glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$?
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(s)+6 \mathrm{O}_{2}(g) \rightarrow 6 \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(l)$
©2009, Prentice-Hall, Inc.

Practice Exercise

The decomposition of KClO_{3} is commonly used to prepare small amounts of O_{2} in the laboratory:
$2 \mathrm{KClO}_{3}(s) \rightarrow 2 \mathrm{KCl}(s)+3 \mathrm{O}_{2}(g)$. How many grams of O_{2} can be prepared from 4.50 g of KClO_{3} ?

Next Lecture

- Limiting Reactants

Chapter 3, Section 3.7
©2009, Prentice-Hall, Inc.

