Human Physiology

Lecture 6 - Monday 29/2/2016
"Resting Membrane Potential" with Dr. Esraa' Kiwan
(Slides are on e-learning)

By Haytham Otoom **PSU**

Reminder: Similar charges repel each other, and opposite charges attract each other. Separation of opposite charges requires work or potential. (إبعاد الشحنات المتضادة عن بعضها)

Membrane potential (الجهد الغشائي):

- Definition: separation of opposite charges across the plasma membrane.
- When the cell is in **resting state**, it has **resting membrane potential**.
- The unit for potential is volts, but since the magnitude of membrane potential is very small we use millivolts (mV).
- "Separation" means that there is a difference of cations and anions inside & and outside the cell.
- Note: If there is
 - O Inside the cell: 50 cations & 50 anions
 - Outside the cell: 50 cations & 50 anions then there is no membrane potential as there is no difference in cation/anion number.
- Most of the ions inside and outside the cell are electrically neutral (كل شحنة موجبة).
- The charges that are electrically NOT neutral are arranged in a thin layer along the inner/outer surface of the membrane.
- As the degree of separation increases, the membrane potential increases as membrane potential depends on separation of ions.
- All cells have resting membrane potential but the magnitude is different for some:
 - Nerve cells: -70 mV
 - O Skeletal & Cardiac muscles: -80 to -90 mV
 - o Smooth muscle: -60 mV
- Notice how the resting membrane potential is negative. The reason for the negative sign is to represent the polarity (تقاطب) inside the cell. A negative charge means that

the inside of the cell membrane is more negative than the outside.

Note: So if we get a question in the exam with "+30 mV", it means the inside of the cell is more positive than the outside.

• All cells in our body have resting membrane potential, but only the nerve & muscle (or the "excitable cells") are able to change the potential.

Ions responsible for membrane potential:

- The main 3 ions that are responsible for membrane potential are
 - o Na+
 - o K+
 - o A (negatively charged intracellular proteins)
- Reminder: The main cation of ECF (extracellular fluid) is Na⁺, and the main cation of ICF (intracellular fluid) is K⁺.
- A represents the proteins inside the cell, and these proteins cannot penetrate the cell membrane so they will always remain inside. (البروتينات لا تستطيع إختراق غشاء الخلية، لذلك)

▲ TABLE 3-3 Concentration and Permeability of Ions Responsible for Membrane Potential in a Resting Nerve Cell				
CONCENTRATION (millimoles/liter)				
ION	Extracellular	Intracellular	RELATIVE PERMEABILITY	
Na ⁺	150	15	1	
	Г	150	FO 75	
K ⁺	5	150	50–75	

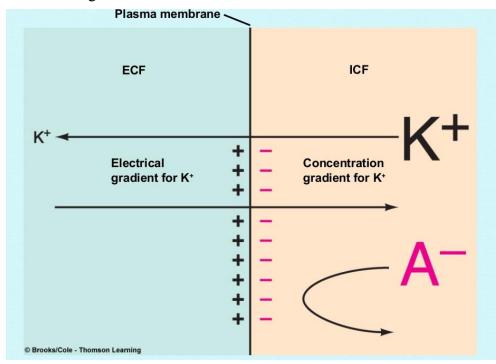
- As we can see, K⁺ is 50-75 times more permeable than Na⁺.

 (نفاذیة البوتاسیوم أعلی)
- It is also notable that the permeability of A⁻ is 0 -> meaning that these proteins cannot leave the cell at all.

- Concentration gradient: when the ions move down their concentration; from an area of high concentration to area of low concentration.
 - According to concentration gradient, Na⁺ should tend to move inside (Na⁺ is higher outside) & K⁺ should tend to move outside (K⁺ is higher inside).
 However, at resting state, K⁺ is 50-75 times more permeable than Na⁺. This means that more K⁺ moves.
- Since the permeability of K^+ is 50-75 times higher than that of Na^+ , that means you will find more channel proteins that transport K^+ .
- 80% of why the inside is more negative //OR// 80% of the resting membrane potential is caused by passive diffusion: (NOTE: Dr. Esraa said this is going to be a question in the first exam).
 - Unequal distribution of K⁺ ions.
 - \circ K⁺ is frequently leaving the cell (so the outside becomes more positive) as it is 50-75 times more permeable than Na⁺. // A⁻ is negative and is always inside the cell.

If 80% of resting membrane potential is caused by passive diffusion, what about the remaining 20%?

- The remaining 20% is controlled by the Na-K (Sodium-Potassium) pump.
- Reminder: passive diffusion occurs when ions move down (higher to lower) the concentration gradient. It is called "passive" because it does not require energy.
- The Na-K pump however moves Na⁺ & K⁺ from lower to higher concentration. Doing this requires energy, so it is called **active transport**.
- The Na-K pump moves 3 Na⁺ out, and 2K⁺ in, and this maintains the concentration gradient of Na & K.
- Pumping 3 positive charges out & 2 positive charges in causes the outside to be more positive

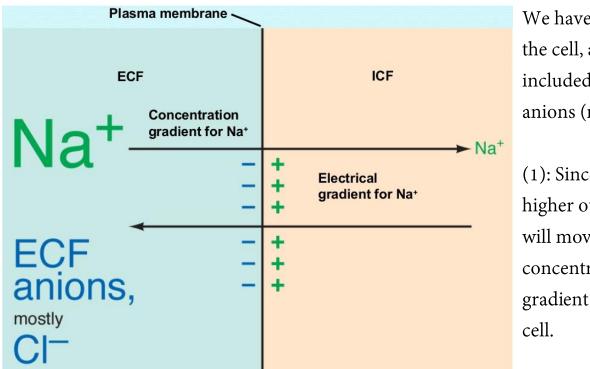

What happens as a result of concentration & electrical gradients?

- Concentration gradient: Ions move from higher to lower concentration. So Na⁺ moves inside, and K⁺ moves outside.
- Electrical gradient: at resting state the cell has a negative membrane potential. Na⁺ is a positive ion, and since positive is attracted to negative charge Na⁺ will move inside. K⁺ is also a positive ion so it will also want to move inside. So electrical gradient is movement of a charged ion to an oppositely charged membrane.

	Concentration gradient	Electrical Gradient
K+	K+ moves outside	K+ moves inside
Na+	Na+ moves inside	Na+ moves inside

Let us imagine a hypothetical situation. (سندرس حالة إفتراضية، لا تحصل في الواقع)

Let us imagine a membrane with no Na⁺, and K⁺ & A⁻ inside the cell.



(1): There is a higher concentration of K⁺ inside than outside. We know that A⁻ cannot move outside, and K⁺ will tend to move down the concentration gradient -> K⁺ tends to move outside (2): This creates an electrical gradient (K⁺ is positive and wants to move towards the negative ICF)

(3): The process of K^+ moving inside and outside is continuous, and will only stop when concentration gradient = electrical gradient. At this point, there is no net movement of K^+ . This point is called K^+ equilibrium potential.

Research found the equilibrium of K^+ to be at -90mV. (Reminder: -90mV means the inside is more negative).

Let's try the same thing but with Na⁺:

We have Na⁺ outside the cell, and we also included ECF & its anions (mostly Cl-).

(1): Since Na⁺ is higher outside, it will move down its concentration gradient into the cell.

- (2): This makes the inside more positive, and makes the outside more negative. However, since there are anions like Cl⁻ outside, this creates an electrical gradient that will cause Na⁺ to move outside.
- (3): Just like K^+ ; This process of Na^+ moving inside and outside is continuous up until the concentration gradient = electrical gradient. This point is called Na^+ equilibrium potential, and researchers found it to be +60 mV (+60 as the inside is more positive).

Summary:

- a) K+ equilibrium:
 - 1) K+ moves outside by concentration gradient
 - 2) K+ moving outside creates negative charge inside
 - 3) K+ starts to move inside by electrical gradient
 - 4) At -90mV, concentration gradient = electrical gradient
- b) Na+ equilibrium:
 - 1) Na+ moves inside by concentration gradient
 - 2) Na+ moving inside creates negative charge outside
 - 3) Na+ starts to move outside by electrical gradient
 - 4) At +60mV, concentration gradient = electrical gradient.

Which ion has a greater effect on resting membrane potential?

• $E_{K+} = -90 \text{mV} \& E_{Na+} = +60 \text{mV}.$

- Resting membrane potential is close to E_{K+} & away from E_{Na+} as K^+ is 50-75 more permeable.
- This means that K^+ has the more dominant effect on membrane potential.