

Kinetics

- In kinetics we study the rate at which a chemical process occurs.
- Besides information about the speed at which reactions occur, kinetics also sheds light on the reaction mechanism (exactly how the reaction occurs).

Factors That Affect Reaction Rates

- Physical State of the Reactants
- In order to react, molecules must come in contact with each other.
- The more homogeneous the mixture of reactants, the faster the molecules can react.

Factors That Affect Reaction Rates

- Concentration of Reactants
- As the concentration of reactants increases, so does the likelihood that reactant molecules will collide.

Factors That Affect Reaction Rates

- Temperature
- At higher temperatures, reactant molecules have more kinetic energy, move faster, and collide more often and with greater energy.

Factors That Affect Reaction Rates

- Presence of a Catalyst
- Catalysts speed up reactions by changing the mechanism of the reaction.
- Catalysts are not consumed during the course of the reaction.

Reaction Rates

$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}(a q)+\mathrm{H}_{2} \mathrm{O}(\mathrm{r}) \longrightarrow \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}(a q)+\mathrm{HCl}(a q)$

Time, $t(\mathbf{s})$	$\left[\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}\right](M)$		
0.0	0.1000		In this reaction, the
50.0	0.0905		concentration of butyl
100.0	0.0820		chloride, $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}$, was
150.0	0.0741		measured at various
200.0	0.0671		times.
300.0	0.0549		
400.0	0.0448		
500.0	0.0368		
800.0	0.0200		
10,000	0		

Reaction Rates

Time, $\boldsymbol{t}(\mathbf{s})$	$\left[\mathrm{C}_{4} \mathbf{H}_{9} \mathrm{Cl}\right](\boldsymbol{M})$		Average Rate $(\boldsymbol{M} / \mathbf{s})$
0.0	0.1000		1.9×10^{-4}
50.0	0.0905		1.7×10^{-4}
100.0	0.0820		1.6×10^{-4}
150.0	0.0741		1.4×10^{-4}
200.0	0.0671		1.22×10^{-4}
300.0	0.0549		1.01×10^{-4}
400.0	0.0448		0.80×10^{-4}
500.0	0.0368		
800.0	0.0200		
10,000	0		

- Note that the average rate decreases as the reaction proceeds.
- This is because as the reaction goes forward, there are fewer collisions between reactant molecules.

PEARSON	Chemistry: The Central Science, Eleventh Edition By Theodore E. Brown, H. Eugene LeMay, Bruce E. Bursten, and Catherine J. Murphy With contributions from Patrick Woodward	Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 All rights reserved.

Reaction Rates

$$
\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}(a q)+\mathrm{H}_{2} \mathrm{O}(r) \longrightarrow \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}(a q)+\mathrm{HCl}(a q)
$$

- A plot of $\left[\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}\right]$ vs. time for this reaction yields a curve like this.
- The slope of a line tangent to the curve at any point is the instantaneous rate at that time.

Reaction Rates

$$
\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \longrightarrow \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}(a q)+\mathrm{HCl}(a q)
$$

- All reactions slow down over time.
- Therefore, the best indicator of the rate of a reaction is the instantaneous rate near the beginning of the reaction.

Reaction Rates and Stoichiometry

$$
\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}(a q)+\mathrm{H}_{2} \mathrm{O}(r) \longrightarrow \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}(a q)+\mathrm{HCl}(a q)
$$

- In this reaction, the ratio of $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}$ to $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}$ is 1:1.
- Thus, the rate of disappearance of $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}$ is the same as the rate of appearance of $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}$.

$$
\text { Rate }=\frac{-\Delta\left[\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}\right]}{\Delta t}=\frac{\Delta\left[\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}\right]^{0.010}}{\Delta t} 0_{100}^{2000} 300 \text { (400 500 } 600700800900
$$

Reaction Rates and Stoichiometry

- What if the ratio is not $1: 1$?

$$
2 \mathrm{HI}(\mathrm{~g}) \longrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})
$$

-In such a case,

$$
\text { Rate }=-\frac{1}{2} \frac{\Delta[\mathrm{HI}]}{\Delta t}=\frac{\Delta\left[\mathrm{I}_{2}\right]}{\Delta t}
$$

Reaction Rates and Stoichiometry

- To generalize, then, for the reaction

$$
\begin{gathered}
a \mathrm{~A}+b \mathrm{~B} \longrightarrow c \mathrm{C}+d \mathrm{D} \\
\text { Rate }=-\frac{1}{\mathrm{a}} \frac{\Delta[\mathrm{~A}]}{\Delta t}=-\frac{1}{b} \frac{\Delta[\mathrm{~B}]}{\Delta t}=\frac{1}{c} \frac{\Delta[\mathrm{C}]}{\Delta t}=\frac{1}{d} \frac{\Delta[\mathrm{D}]}{\Delta t}
\end{gathered}
$$

Sample Exercise 14.1 Calculating an Average Rate of Reaction
From the data given in the caption of Figure 14.3, calculate the average rate at which
A disappears over the time interval from 20 s to 40 s .
Solution
Analyze: We are given the concentration of A at $20 \mathrm{~s}(0.54 M)$ and at $40 \mathrm{~s}(0.30 \mathrm{M})$ and asked to calculate the average rate of reaction over this time interval.
Plan: The average rate is given by the change in concentration, $\Delta[\mathrm{A}]$, divided by the corresponding change in time, Δt. Because A is a reactant, a minus sign is used in the calculation to make the rate a positive quantity.

$$
\text { Solve: Average rate }=-\frac{\Delta[\mathrm{A}]}{\Delta t}=-\frac{0.30 \mathrm{M}-0.54 \mathrm{M}}{40 \mathrm{~s}-20 \mathrm{~s}}=1.2 \times 10^{-2} \mathrm{M} / \mathrm{s}
$$

Practice Exercise

For the reaction pictured in Figure 14.3, calculate the average rate of appearance of B over the time interval from 0 to 40 s .
Answer: $1.8 \times 10^{-2} \mathrm{M} / \mathrm{s}$

Sample Exercise 14.2 Calculating an Instantaneous Rate of Reaction

Using Figure 14.4, calculate the instantaneous rate of disappearance of $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}$ at $t=0$ (the initial rate).

Solution

Analyze: We are asked to determine an instantaneous rate from a graph of concentration versus time. Plan: To obtain the instantaneous rate at $t=0$, we must determine the slope of the curve at $t=0$. The tangent is drawn on the graph.


```
Chemistry: The Central Science, Eleventh Edition By Theodore E. Brown, H. Eugene LeMay, Bruce E. Bursten, and Catherine J. Murphy With contributions from Patrick Woodward

Copyright ©2009 by Pearson Education, Inc.

\section*{Sample Exercise 14.2 Calculating an Instantaneous Rate of Reaction}

Using Figure 14.4, calculate the instantaneous rate of disappearance of \(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}\) at \(t=0\) (the initial rate).

\section*{Solution}

The slope of this straight line equals the change in the vertical axis divided by the corresponding change in the horizontal axis (that is, change in molarity over change in time)
Solve: The straight line falls from \(\left[\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}\right]=0.100 \mathrm{M}\) to 0.060 M in the time change from 0 s to 210 s , as indicated by the tan triangle shown in Figure 14.4. Thus, the initial rate is
\[
\text { Rate }=-\frac{\Delta\left[\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}\right]}{\Delta t}=-\frac{(0.060-0.100) \mathrm{M}}{(210-0) \mathrm{s}}=1.9 \times 10^{-4} \mathrm{M} / \mathrm{s}
\]

\section*{Practice Exercise}

Using Figure 14.4, determine the instantaneous rate of disappearance of \(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}\) at \(t=300 \mathrm{~s}\). Answer: \(1.1 \times 10^{-4} \mathrm{M} / \mathrm{s}\)
\begin{tabular}{lll}
\hline & \\
\hline
\end{tabular}

\section*{Sample Exercise 14.3 Relating Rates at Which Products Appear and Reactants Disappear}
(a) How is the rate at which ozone disappears related to the rate at which oxygen appears in the reaction \(2 \mathrm{O}_{3}(\mathrm{~g}) \rightarrow 3 \mathrm{O}_{2}(\mathrm{~g})\) ? (b) If the rate at which \(\mathrm{O}_{2}\) appears, \(\Delta\left[\mathrm{O}_{2}\right] / \Delta t\), is \(6.0 \times 10^{-5} \mathrm{M} / \mathrm{s}\) at a particular instant, at what rate is \(\mathrm{O}_{3}\) disappearing at this same time, \(-\Delta\left[\mathrm{O}_{3}\right] / \Delta t\) ?
Solution
Analyze: We are given a balanced chemical equation and asked to relate the rate of appearance of the product to the rate of disappearance of the reactant
Plan: We can use the coefficients in the chemical equation as shown in Equation 14.4 to express the relative rates of reactions.
Solve: (a) Using the coefficients in the balanced
equation and the relationship given by Equation 14.4
we have:
\[
\text { Rate }=-\frac{1}{2} \frac{\Delta\left[\mathrm{O}_{3}\right]}{\Delta t}=\frac{1}{3} \frac{\Delta\left[\mathrm{O}_{2}\right]}{\Delta t}
\]
(b) Solving the equation from part (a) for the rate at which \(\mathrm{O}_{3}\) disappears, \(-\Delta\left[\mathrm{O}_{3}\right] / \Delta t\) we have:
\[
\begin{aligned}
-\frac{\Delta\left[\mathrm{O}_{3}\right]}{\Delta t} & =\frac{2}{3} \frac{\Delta\left[\mathrm{O}_{2}\right]}{\Delta t}=\frac{2}{3}\left(6.0 \times 10^{-5} \mathrm{M} / \mathrm{s}\right)=4.0 \times 10^{-5} \mathrm{M} / \mathrm{s} \\
-\frac{\Delta\left[\mathrm{O}_{3}\right]}{\Delta t} & =\left(6.0 \times 10^{-5} \frac{\mathrm{~mol} \mathrm{O}_{2} / \mathrm{L}}{\mathrm{~s}}\right)\left(\frac{2 \mathrm{~mol} \mathrm{O}_{3}}{3 \mathrm{~mol} \mathrm{O}_{2}}\right)=4.0 \times 10^{-5} \frac{\mathrm{~mol} \mathrm{O}_{3} / \mathrm{L}}{\mathrm{~s}} \\
& =4.0 \times 10^{-5} \mathrm{M} / \mathrm{s}
\end{aligned}
\]

Check: We can directly apply a stoichiometric factor
to convert the \(\mathrm{O}_{2}\) formation rate to the rate at
which the \(\mathrm{O}_{3}\) disappears:

\section*{Sample Exercise 14.3 Relating Rates at Which Products Appear and Reactants Disappear}

\section*{Practice Exercise}

The decomposition of \(\mathrm{N}_{2} \mathrm{O}_{5}\) proceeds according to the following equation:
\[
2 \mathrm{~N}_{2} \mathrm{O}_{5}(g) \rightarrow 4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)
\]

If the rate of decomposition of \(\mathrm{N}_{2} \mathrm{O}_{5}\) at a particular instant in a reaction vessel is \(4.2 \times 10^{-7} \mathrm{M} / \mathrm{s}\), what is the rate of appearance of (a) \(\mathrm{NO}_{2}\), (b) \(\mathrm{O}_{2}\) ?
Answer: (a) \(8.4 \times 10^{-7} \mathrm{M} / \mathrm{s}\), (b) \(2.1 \times 10^{-7} \mathrm{M} / \mathrm{s}\)


\section*{Concentration and Rate}

One can gain information about the rate of a reaction by seeing how the rate changes with changes in concentration.

\section*{Concentration and Rate}
\begin{tabular}{lllc}
\begin{tabular}{l} 
Experiment \\
Number
\end{tabular} & \begin{tabular}{l} 
Initial \(\mathrm{NH}_{4}{ }^{+}\) \\
Concentration ( \(\boldsymbol{M})\)
\end{tabular} & \begin{tabular}{l} 
Initial \(\mathrm{NO}_{2}{ }^{-}\) \\
Concentration ( \(\boldsymbol{M})\)
\end{tabular} & \begin{tabular}{l} 
Observed Initial \\
Rate \((\boldsymbol{M} / \mathbf{s})\)
\end{tabular} \\
\hline 1 & 0.0100 & 0.200 & \(5.4 \times 10^{-7}\) \\
2 & 0.0200 & 0.200 & \(10.8 \times 10^{-7}\) \\
3 & 0.0400 & 0.200 & \(21.5 \times 10^{-7}\) \\
4 & 0.200 & 0.0202 & \(10.8 \times 10^{-7}\) \\
5 & 0.200 & 0.0404 & \(21.6 \times 10^{-7}\) \\
6 & 0.200 & 0.0808 & \(43.3 \times 10^{-7}\) \\
\hline
\end{tabular}
\(\mathrm{NH}_{4}{ }^{+}(a q)+\mathrm{NO}_{2}^{-}(a q) \longrightarrow \mathrm{N}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(I)\)
If we compare Experiments 1 and 2, we see that when \(\left[\mathrm{NH}_{4}{ }^{+}\right]\)doubles, the initial rate doubles.

\section*{Concentration and Rate}
\begin{tabular}{|lllc}
\hline \begin{tabular}{l} 
Experiment \\
Number
\end{tabular} & \begin{tabular}{l} 
Initial \(\mathrm{NH}_{4}{ }^{+}\) \\
Concentration \((M)\)
\end{tabular} & \begin{tabular}{l} 
Initial \(\mathrm{NO}_{2}{ }^{-}\) \\
Concentration \((M)\)
\end{tabular} & \begin{tabular}{l} 
Observed Initial \\
Rate \((\boldsymbol{M} / \mathrm{s})\)
\end{tabular} \\
\hline 1 & 0.0100 & 0.200 & \(5.4 \times 10^{-7}\) \\
2 & 0.0200 & 0.200 & \(10.8 \times 10^{-7}\) \\
3 & 0.0400 & 0.200 & \(21.5 \times 10^{-7}\) \\
4 & 0.200 & 0.0202 & \(10.8 \times 10^{-7}\) \\
5 & 0.200 & 0.0404 & \(21.6 \times 10^{-7}\) \\
6 & 0.200 & 0.0808 & \(43.3 \times 10^{-7}\) \\
\hline & & & \\
& \(\mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{NO}_{2}{ }^{-}(\mathrm{aq})\) & \(\longrightarrow\) & \(\mathrm{N}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(/)\)
\end{tabular}

Likewise, when we compare Experiments 5 and 6, we see that when \(\left[\mathrm{NO}_{2}{ }^{-}\right]\)doubles, the initial rate doubles.

\section*{Concentration and Rate}
- This means

Rate \(\propto\left[\mathrm{NH}_{4}{ }^{+}\right]\)
Rate \(\propto\left[\mathrm{NO}_{2}{ }^{-}\right]\)
Therefore, Rate \(\propto\left[\mathrm{NH}^{+}\right]\left[\mathrm{NO}_{2}{ }^{-}\right]\)
which, when written as an equation, becomes
\[
\text { Rate }=k\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{NO}_{2}^{-}\right]
\]
- This equation is called the rate law, and \(k\) is the rate constant.
\begin{tabular}{|ll|}
\hline PEARSON & \begin{tabular}{l} 
Chemistry: The Central Science, Eleventh Edition \\
By Theodore E. Brown, H. Eugene LeMay, Bruce E. Bursten, and Catherine J. Murphy \\
With contributions from Patrick Woodward
\end{tabular} \\
\hline Education & \begin{tabular}{r} 
Copyright ©2009 by Pearson Education, Inc. \\
Upper Saddle River, New Jersey 07458 \\
All rights reserved.
\end{tabular} \\
\hline
\end{tabular}

\section*{Rate Laws}
- A rate law shows the relationship between the reaction rate and the concentrations of reactants.
- The exponents tell the order of the reaction with respect to each reactant.
- Since the rate law is
\[
\text { Rate }=k\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{NO}_{2}^{-}\right]
\]
the reaction is
First-order in \(\left[\mathrm{NH}_{4}{ }^{+}\right]\)and
First-order in \(\left[\mathrm{NO}_{2}{ }^{-}\right]\).
\[
\begin{gathered}
\text { Rate Laws } \\
\text { Rate }=k\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{NO}_{2}^{-}\right]
\end{gathered}
\]
- The overall reaction order can be found by adding the exponents on the reactants in the rate law.
- This reaction is second-order overall.

\section*{Sample Exercise 14.4 Relating a Rate Law to the Effect of concentration on Rate}

Consider a reaction \(\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}\) for which \(=k[\mathrm{~A}][\mathrm{B}]^{2}\). Each of the following boxes represents a reaction mixture in which \(A\) is shown as red spheres and \(B\) as purple ones. Rank these mixtures in order of increasing rate of reaction.

\section*{Solution}


Analyze: We are given three boxes containing different numbers of spheres representing mixtures
containing different reactant concentrations. We are asked to use the given rate law and the compositions of the boxes to rank the mixtures in order of increasing reaction rates.
Plan: Because all three boxes have the same volume, we can put the number of spheres of each kind into the rate law and calculate the rate for each box.
Solve: Box 1 contains 5 red spheres and 5 purple spheres, giving the following rate:
\[
\begin{array}{r}
\text { Box 1: Rate }=k(5)(5)^{2}=125 k \\
\text { Box } 2 \text { contains } 7 \text { red spheres and } 3 \text { purple spheres: } \\
\text { Box 2: Rate }=k(7)(3)^{2}=63 k \\
\text { Box } 3 \text { contains } 3 \text { red spheres and } 7 \text { purple spheres: } \\
\text { Box 3: Rate }=k(3)(7)^{2}=147 k
\end{array}
\]

The slowest rate is \(63 k\) (box 2), and the highest is \(147 k\) (box 3 ). Thus, the rates vary in the order \(2<1<3\).
\begin{tabular}{|ll}
\hline PEARSON
\end{tabular} \begin{tabular}{l} 
Chemistry: The Central Science, Eleventh Edition \\
By Theodore E. Brown, H. Eugene LeMay, Bruce E. Bursten, and Catherine J. Murphy \\
With contributions from Patrick Woodward
\end{tabular}\(\quad\)\begin{tabular}{r} 
Copyright ©2009 by Pearson Education, Inc. \\
Upper Saddle River, New Jersey 07458 \\
All rights reserved.
\end{tabular}

Sample Exercise 14.4 Relating a Rate Law to the Effect of concentration on Rate
Solution (continued)
Check: Each box contains 10 spheres. The rate law indicates that in this case [B] has a greater influence on rate than [A] because \(B\) has a higher reaction order. Hence, the mixture with the highest concentration of \(B\) (most purple spheres) should react fastest. This analysis confirms the order \(2<1<3\).

\section*{Practice Exercise}

Assuming that rate \(=k[\mathrm{~A}][\mathrm{B}]\), rank the mixtures represented in this Sample Exercise in order of increasing rate.
Answer: \(2=3<1\)
\begin{tabular}{ll}
\hline & \\
\hline
\end{tabular}

\section*{Sample Exercise 14.5 Determining Reaction Order and Units of Rate Constants}
(a) What are the overall reaction orders for the reactions described in Equations 14.9 and 14.10 ? (b) What are the units of the rate constant for the rate law in Equation 14.9?

\section*{Solution}

Analyze: We are given two rate laws and asked to express (a) the overall reaction order for each and (b) the units for the rate constant for the first reaction.
Plan: The overall reaction order is the sum of the exponents in the rate law. The units for the rate constant, \(k\), are found by using the normal units for rate \((M / s)\) and concentration \((M)\) in the rate law and applying algebra to solve for \(k\).
Solve: (a) The rate of the reaction in Equation 14.9 is first order in \(\mathrm{N}_{2} \mathrm{O}_{5}\) and first order overall. The reaction in Equation 14.10 is first order in \(\mathrm{CHCl}_{3}\) and one-half order in \(\mathrm{Cl}_{2}\). The overall reaction order is three halves. (b) For the rate law for Equation 14.9, we have

Units of rate \(=\) (units of rate constant)(units of concentration)
So
\[
\text { Units of rate constant }=\frac{\text { units of rate }}{\text { units of concentration }}=\frac{M / \mathrm{s}}{M}=\mathrm{s}^{-1} \text { on changes. }
\]

\section*{Practice Exercise}
(a) What is the reaction order of the reactant \(\mathrm{H}_{2}\) in Equation 14.11 ? (b) What are the units of the rate constant for Equation 14.11?
Answer: (a) 1 , (b) \(M^{-1} \mathrm{~s}^{-1}\)

Chemistry: The Central Science, Eleventh Edition

\section*{Sample Exercise 14.6 Determining a Rate Law from Initial Rate Data}

The initial rate of a reaction \(\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}\) was measured for several different starting concentrations of A and B , and the results are as follows:
\begin{tabular}{llll}
\hline \begin{tabular}{l} 
Experiment \\
Number
\end{tabular} & {\([\mathrm{A}](M)\)} & {\([\mathrm{B}](M)\)} & \begin{tabular}{l} 
Initial Rate \\
\((M / \mathrm{s})\)
\end{tabular} \\
\hline 1 & 0.100 & 0.100 & \(4.0 \times 10^{-5}\) \\
2 & 0.100 & 0.200 & \(4.0 \times 10^{-5}\) \\
3 & 0.200 & 0.100 & \(16.0 \times 10^{-5}\) \\
\hline
\end{tabular}

Using these data, determine (a) the rate law for the reaction, (b) the rate constant, (c) the rate of the reaction when \([\mathrm{A}]=0.050 \mathrm{M}\) and \([\mathrm{B}]=0.100 \mathrm{M}\).

\section*{Solution}

Analyze: We are given a table of data that relates concentrations of reactants with initial rates of reaction and asked to determine (a) the rate law, (b) the rate constant, and (c) the rate of reaction for a set of concentrations not listed in the table.
Plan: (a) We assume that the rate law has the following form: Rate \(=k[\mathrm{~A}]^{m}[\mathrm{~B}]^{n}\) so we must use the given data to deduce the reaction orders \(m\) and \(n\). We do so by determining how changes in the concentration change the rate. (b) Once we know \(m\) and \(n\), we can use the rate law and one of the sets of data to determine the rate constant \(k\). (c) Now that we know both the rate constant and the reaction orders, we can use the rate law with the given concentrations to calculate rate.
\begin{tabular}{ll} 
PEARSON & \begin{tabular}{l} 
Chemistry: The Central Science, Eleventh Edition \\
By Theodore E. Brown, H. Eugene LeMay, Bruce E. Bursten, and Catherine J. Murphy \\
With contributions from Patrick Woodward
\end{tabular}
\end{tabular} \begin{tabular}{r} 
Copyright ©2009 by Pearson Education, Inc. \\
Upper Saddle River, New Jersey 07458 \\
All rights reserved.
\end{tabular}


Sample Exercise 14.6 Determining a Rate Law from Initial Rate Data
Solution (continued)
Because \(2^{m}=4\), we conclude that
(b) Using the rate law and the data from experiment 1, we have
(c) Using the rate law from part (a) and the rate
\[
\begin{aligned}
& m=2 \\
& k=\frac{\text { rate }}{[\mathrm{A}]^{2}}=\frac{4.0 \times 10^{-5} \mathrm{M} / \mathrm{s}}{(0.100 \mathrm{M})^{2}}=4.0 \times 10^{-3} \mathrm{M}^{-1} \mathrm{~s}^{-1} \\
& \text { Rate }=k[\mathrm{~A}]^{2}=\left(4.0 \times 10^{-3} \mathrm{M}^{-1} \mathrm{~s}^{-1}\right)(0.050 \mathrm{M})^{2}=1.0 \times 10^{-5} \mathrm{M} / \mathrm{s}
\end{aligned}
\]

Because [B] is not part of the rate law, it is irrelevant to the rate, if there is at least some \(B\) present to react with A.

Check: A good way to check our rate law is to use the concentrations in experiment 2 or 3 and see if we can correctly calculate the rate. Using data from experiment 3, we have
\[
\text { Rate }=k[\mathrm{~A}]^{2}=\left(4.0 \times 10^{-3} \mathrm{M}^{-1} \mathrm{~s}^{-1}\right)(0.200 \mathrm{M})^{2}=1.6 \times 10^{-4} \mathrm{M} / \mathrm{s}
\]

Thus, the rate law correctly reproduces the data, giving both the correct number and the correct units for the rate.
\begin{tabular}{|c|c|c|}
\hline PEARSON & Chemistry: The Central Science, Eleventh Edition & Copyright ©2009 by Pearson Education, Inc. \\
\hline Education & By Theodore E. Brown, H. Eugene LeMay, Bruce E. Bursten, and Catherine J. Murphy & Upper Saddle River, New Jersey 07458 \\
\hline Eaucation & With contributions from Patrick Woodward & All rights reserved. \\
\hline
\end{tabular}

\section*{Sample Exercise 14.6 Determining a Rate Law from Initial Rate Data}

\section*{Practice Exercise}

The following data were measured for the reaction of nitric oxide with hydrogen:
\(2 \mathrm{NO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})\)
\begin{tabular}{llll}
\hline \begin{tabular}{l} 
Experiment \\
Number
\end{tabular} & {\([\mathrm{NO}](\mathrm{M})\)} & {\(\left[\mathrm{H}_{2}\right](\mathrm{M})\)} & \begin{tabular}{l} 
Initial Rate \\
\((\mathrm{M} / \mathrm{s})\)
\end{tabular} \\
\hline 1 & 0.10 & 0.10 & \(1.23 \times 10^{-3}\) \\
2 & 0.10 & 0.20 & \(2.46 \times 10^{-3}\) \\
3 & 0.20 & 0.10 & \(4.92 \times 10^{-3}\) \\
\hline
\end{tabular}
(a) Determine the rate law for this reaction. (b) Calculate the rate constant. (c) Calculate the rate when [NO] \(=0.050 \mathrm{M}\) and \(\left[\mathrm{H}_{2}\right]=0.150 \mathrm{M}\)
Answers: (a) rate \(=k[\mathrm{NO}]^{2}\left[\mathrm{H}_{2}\right]\); (b) \(k=1.2 \mathrm{M}^{-2} \mathrm{~s}^{-1}\); (c) rate \(=4.5 \times 10^{-4} \mathrm{M} / \mathrm{s}\)

\section*{Integrated Rate Laws}

Using calculus to integrate the rate law for a first-order process gives us
\[
\ln \frac{[\mathrm{A}]_{t}}{[\mathrm{~A}]_{0}}=-k t
\]

Where
\([A]_{0}\) is the initial concentration of \(A\), and
\([A]_{t}\) is the concentration of \(A\) at some time, \(t\), during the course of the reaction.

\footnotetext{
Chemistry: The Central Science, Eleventh Edition
Copyright ©2009 by Pearson Education, Inc.
}

\section*{Integrated Rate Laws}

Manipulating this equation produces...
\[
\ln \frac{[\mathrm{A}]_{t}}{[\mathrm{~A}]_{0}}=-k t
\]
\[
\ln [\mathrm{A}]_{t}-\ln [\mathrm{A}]_{0}=-k t
\]
\[
\ln [\mathrm{A}]_{t}=-k \mathrm{t}+\ln [\mathrm{A}]_{0}
\]
...which is in the form
\[
y=m x+b
\]

\section*{First-Order Processes}
\[
\ln [\mathrm{A}]_{t}=-k t+\ln [\mathrm{A}]_{0}
\]

Therefore, if a reaction is first-order, a plot of \(\ln [A]\) vs. \(t\) will yield a straight line, and the slope of the line will be \(-k\).


\section*{First-Order Processes}

This data was collected for this reaction at \(198.9^{\circ} \mathrm{C}\).


\section*{First-Order Processes}

- When \(\ln P\) is plotted as a function of time, a straight line results.
- Therefore,
- The process is first-order.
- \(k\) is the negative of the slope: \(5.1 \times 10^{-5} \mathrm{~s}^{-1}\).

\section*{Second-Order Processes}

Similarly, integrating the rate law for a process that is second-order in reactant A, we get
\[
\begin{aligned}
\frac{1}{[\mathrm{~A}]_{t}} & =k t+\frac{1}{[\mathrm{~A}]_{0}} \\
y & =\mathrm{mx}+b
\end{aligned}
\]
also in the form

\section*{Second-Order Processes}
\[
\frac{1}{[\mathrm{~A}]_{t}}=k t+\frac{1}{[\mathrm{~A}]_{0}}
\]

So if a process is second-order in A , a plot of \(\frac{1}{[A]}\) vs. \(t\) will yield a straight line, and the slope of that line is \(k\).

\section*{Second-Order Processes}

The decomposition of \(\mathrm{NO}_{2}\) at \(300^{\circ} \mathrm{C}\) is described by the equation
\[
\mathrm{NO}_{2}(\mathrm{~g}) \longrightarrow \mathrm{NO}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})
\]
and yields data comparable to this:
\begin{tabular}{|c|c|}
\hline Time \((s)\) & {\(\left[\mathrm{NO}_{2}\right], M\)} \\
\hline 0.0 & 0.01000 \\
\hline 50.0 & 0.00787 \\
\hline 100.0 & 0.00649 \\
\hline 200.0 & 0.00481 \\
\hline 300.0 & 0.00380 \\
\hline
\end{tabular}

\section*{Second-Order Processes}
- Plotting In \(\left[\mathrm{NO}_{2}\right]\) vs. \(t\) yields the graph at the right.
- The plot is not a straight line, so the process is not first-order in [A].
\begin{tabular}{|c|c|c|}
\hline Time (s) & {\(\left[\mathrm{NO}_{2}\right], M\)} & \(\ln \left[\mathrm{NO}_{2}\right]\) \\
\hline 0.0 & 0.01000 & -4.610 \\
\hline 50.0 & 0.00787 & -4.845 \\
\hline 100.0 & 0.00649 & -5.038 \\
\hline 200.0 & 0.00481 & -5.337 \\
\hline 300.0 & 0.00380 & -5.573 \\
\hline
\end{tabular}



\section*{Half-Life}

- Half-life is defined as the time required for one-half of a reactant to react.
- Because [A] at \(t_{1 / 2}\) is one-half of the original [A],
\[
[\mathrm{A}]_{t}=0.5[\mathrm{~A}]_{0}
\]

\section*{Half-Life}

For a first-order process, this becomes
\[
\begin{aligned}
\ln \frac{0.5[\mathrm{~A}]_{0}}{[\mathrm{~A}]_{0}} & =-k t_{1 / 2} \\
\ln 0.5 & =-k t_{1 / 2} \\
-0.693 & =-k t_{1 / 2}
\end{aligned}
\]

NOTE: For a first-order process, then, the half-life \(\frac{0.693}{k}=t_{1 / 2}\) does not depend on \([A]_{0}\).
\begin{tabular}{lll}
\hline PEARSON & \begin{tabular}{l} 
Chemistry: The Central Science, Eleventh Edition \\
By Theodore E. Brown, H. Eugene LeMay, Bruce E. Bursten, and Catherine J. Murphy \\
With contributions from Patrick Woodward
\end{tabular} & \begin{tabular}{r} 
Copyright ©2009 by Pearson Education, Inc. \\
Upper Saddle River, New Jersey 07458 \\
All rights reserved.
\end{tabular} \\
\hline Education
\end{tabular}

\section*{Half-Life \\ For a second-order process,}
\[
\begin{aligned}
\frac{1}{0.5[\mathrm{~A}]_{0}} & =k t_{1 / 2}+\frac{1}{[\mathrm{~A}]_{0}} \\
\frac{2}{[\mathrm{~A}]_{0}} & =k t_{1 / 2}+\frac{1}{[\mathrm{~A}]_{0}} \\
\frac{2-1}{[\mathrm{~A}]_{0}}=\frac{1}{[\mathrm{~A}]_{0}} & =k t_{1 / 2} \\
\frac{1}{k[\mathrm{~A}]_{0}} & =t_{1 / 2}
\end{aligned}
\]

\section*{Sample Exercise 14.7 Using the Integrated First-Order Rate Law}

The decomposition of a certain insecticide in water follows first-order kinetics with a rate constant of \(1.45 \mathrm{yr}^{-1}\) at \(12{ }^{\circ} \mathrm{C}\). A quantity of this insecticide is washed into a lake on June 1 , leading to a concentration of \(5.0 \times 10^{-7} \mathrm{~g} / \mathrm{cm}^{3}\). Assume that the average temperature of the lake is \(12^{\circ} \mathrm{C}\). (a) What is the concentration of the insecticide on June 1 of the following year? (b) How long will it take for the concentration of the insecticide to decrease to \(3.0 \times 10^{-7} \mathrm{~g} / \mathrm{cm}^{3}\) ?

\section*{Solution}

Analyze: We are given the rate constant for a reaction that obeys first-order kinetics, as well as information about concentrations and times, and asked to calculate how much reactant (insecticide) remains after one year. We must also determine the time interval needed to reach a particular insecticide concentration.
Because the exercise gives time in (a) and asks for time in (b), we know that the integrated rate law, Equation 14.13, is required.
Plan: (a) We are given \(k=1.45 \mathrm{yr}^{-1}, t=1.00 \mathrm{yr}\) and [insecticide] \({ }_{0}=5.0 \times 10^{-7} \mathrm{~g} / \mathrm{cm}^{3}\), and so Equation 14.13 can be solved for [insecticide] \({ }_{t}\). (b) We have \(k=1.45 \mathrm{yr}^{-1}\), [insecticide] \({ }_{0}=5.0 \times 10^{-7} \mathrm{~g} / \mathrm{cm}^{3}\), and [insecticide] \(=3.0 \times 10^{-7} \mathrm{~g} / \mathrm{cm}^{3}\), and so we can solve Equation 14.13 for time, \(t\).
Solve: (a) Substituting the known quantities into
Equation 14.13, we have
We use the \(\ln\) function on a calculator to evaluate the secondterm on the right, giving

To obtain [insecticide] \(]_{t=1 \text { yr }}\), we use the inverse natural
\[
\begin{aligned}
& \ln [\text { insecticide }]_{t=1 ~ y r}=-\left(1.45 \mathrm{yr}^{-1}\right)(1.00 \mathrm{yr})+\ln \left(5.0 \times 10^{-7}\right) \\
& \ln [\text { insecticide }]_{t=1 \mathrm{yr}}=-1.45+(-14.51)=-15.96 \\
& \text { [insecticide }]_{t=1 ~}^{\mathrm{yr}} \\
& =e^{-15.96}=1.2 \times 10^{-7} \mathrm{~g} / \mathrm{cm}^{3}
\end{aligned}
\]
\[
\text { logarithm, or } e^{x} \text {, function on the calculator: }
\]

Sample Exercise 14.7 Using the Integrated First-Order Rate Law
Solution (continued)
Note that the concentration units for \([\mathrm{A}]_{t}\) and \([\mathrm{A}]_{0}\) must be the same.
(b) Again substituting into Equation 14.13, with [insecticide] \({ }_{t}=3.0 \times 10^{-7} \mathrm{~g} / \mathrm{cm}^{3}\), gives
\[
\begin{aligned}
& \ln \left(3.0 \times 10^{-7}\right)=-\left(1.45 \mathrm{yr}^{-1}\right)(t)+\ln \left(5.0 \times 10^{-7}\right) \\
& t=-\left[\ln \left(3.0 \times 10^{-7}\right)-\ln \left(5.0 \times 10^{-7}\right)\right] / 1.45 \mathrm{yr}^{-1} \\
& \quad=-(-15.02+14.51) / 1.45 \mathrm{yr}^{-1}=0.35 \mathrm{yr}
\end{aligned}
\]

Check: In part (a) the concentration remaining after \(1.00 \mathrm{yr}\left(\right.\) that is, \(1.2 \times 10^{-7} \mathrm{~g} / \mathrm{cm}^{3}\) ) is less than the original concentration ( \(5.0 \times 10^{-7} \mathrm{~g} / \mathrm{cm}^{3}\) ), as it should be. In (b) the given concentration ( \(3.0 \times 10^{-7} \mathrm{~g} / \mathrm{cm}^{3}\) ) is greater than that remaining after 1.00 yr , indicating that the time must be less than a year. Thus, \(t=0.35 \mathrm{yr}\) is a reasonable answer.

\section*{Practice Exercise}

The decomposition of dimethyl ether, \(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}\), at \(510^{\circ} \mathrm{C}\) is a first-order process with a rate constant of \(6.8 \times 10^{-4} \mathrm{~s}^{-1}\) :
\[
\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}(\mathrm{~g}) \longrightarrow \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g})
\]

If the initial pressure of \(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}\) is 135 torr, what is its pressure after 1420 s ?
Answer: 51 torr
```

Chemistry:The Central Science, Eleventh Edition

```

``` By Theodore E Brown, H. Eugene LeMay, Bruce E. Bursten, and Catherine J. Murphy By theodore E. Brown, H. Eugene LeMay,

Sample Exercise 14.8 Determining Reaction Order from the Integrated Rate Law
The following data were obtained for the gas-phase decomposition of nitrogen dioxide at \(300^{\circ} \mathrm{C}\),
\(\mathrm{NO}_{2}(\mathrm{~g}) \longrightarrow \mathrm{NO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}):\)
\begin{tabular}{cl}
\hline Time (s) & {\(\left[\mathrm{NO}_{2}\right](\mathrm{M})\)} \\
\hline 0.0 & 0.01000 \\
50.0 & 0.00787 \\
100.0 & 0.00649 \\
200.0 & 0.00481 \\
300.0 & 0.00380 \\
\hline
\end{tabular}

Is the reaction first or second order in \(\mathrm{NO}_{2}\) ?

\section*{Solution}

Analyze: We are given the concentrations of a reactant at various times during a reaction and asked to determine whether the reaction is first or second order.
Plan: We can plot \(\ln \left[\mathrm{NO}_{2}\right]\) and \(1 /\left[\mathrm{NO}_{2}\right]\) against time. One or the other will be linear, indicating whether the reaction is first or second order.
\begin{tabular}{|ll}
PEARSON
\end{tabular} \begin{tabular}{l}
Chemistry: The Central Science, Eleventh Edition \\
By Theodore E. Brown, H. Eugene LeMay, Bruce E. Bursten, and Catherine J. Murphy
\end{tabular}\(\quad\)\begin{tabular}{r}
Copyright ©2009 by Pearson Education, Inc. \\
Upper Saddle River, New Jersey 0758 \\
With contributions from Patrick Woodward
\end{tabular}

Sample Exercise 14.8 Determining Reaction Order from the Integrated Rate Law
Solution (continued)
Solve: To graph \(\ln \left[\mathrm{NO}_{2}\right]\) and \(1 /\left[\mathrm{NO}_{2}\right]\) against time, we will first prepare the following table from the data given:
\begin{tabular}{clll}
\hline Time (s) & {\(\left[\mathrm{NO}_{2}\right](M)\)} & \(\ln \left[\mathrm{NO}_{2}\right]\) & \(\mathbf{1} /\left[\mathrm{NO}_{2}\right]\) \\
\hline 0.0 & 0.01000 & -4.605 & 100 \\
50.0 & 0.00787 & -4.845 & 127 \\
100.0 & 0.00649 & -5.037 & 154 \\
200.0 & 0.00481 & -5.337 & 208 \\
300.0 & 0.00380 & -5.573 & 263 \\
\hline
\end{tabular}

As Figure 14.8 shows, only the plot of \(1 /\left[\mathrm{NO}_{2}\right]\) versus time is linear. Thus, the reaction obeys a secondorder rate law: Rate \(=k\left[\mathrm{NO}_{2}\right]^{2}\). From the slope of this straight-line graph, we determine that
\(k=0.543 M^{-1} \mathrm{~s}^{-1}\) for the disappearance of \(\mathrm{NO}_{2}\).
\begin{tabular}{|llr|}
\hline \begin{tabular}{l}
PEARSON
\end{tabular} & \begin{tabular}{l}
Chemistry: The Central Science, Eleventh Edition \\
By Theodore E. Brown, H. Eugene LeMay, Bruce E. Bursten, and Catherine J. Murphy \\
With contributions from Patrick Woodward
\end{tabular} & \begin{tabular}{r}
Copyright ©2009 by Pearson Education, Inc. \\
Upper Saddle River, New Jersey 07458 \\
All rights reserved.
\end{tabular} \\
\hline Education
\end{tabular}

Sample Exercise 14.8 Determining Reaction Order from the Integrated Rate Law
Solution (continued)

(a)

(b)
\(\Delta\) Figure 14.8 Kinetic data for decomposition of \(\mathrm{NO}_{2}\). The reaction is \(\mathrm{NO}_{2}(g)\) \(\mathrm{NO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})\), and the data were collected at \(300{ }^{\circ} \mathrm{C}\). (a) A plot of \(\ln \left[\mathrm{NO}_{2}\right]\) versus time is not linear, indicating that the reaction is not first order in \(\mathrm{NO}_{2}\). (b) A plot of \(1 /\left[\mathrm{NO}_{2}\right]\) versus time is linear, indicating that the reaction is second order in \(\mathrm{NO}_{2}\).

\section*{Practice Exercise}

Consider again the decomposition of \(\mathrm{NO}_{2}\) discussed in the Sample Exercise. The reaction is second order in \(\mathrm{NO}_{2}\) with \(k=0.543 \mathrm{M}^{-1} \mathrm{~s}^{-1}\). If the initial concentration of
\(\mathrm{NO}_{2}\) in a closed vessel is 0.0500 M , what is the remaining concentration after 0.500 h ?
Answer: Using Equation 14.14, we find \(\left[\mathrm{NO}_{2}\right]=1.00 \times 10^{-3} \mathrm{M}\)

By Theodore E. Brown, H. Eugene LeMay, Bruce E. Bursten, and Catherine J. Murphy With contributions from Patrick Woodward

\section*{Sample Exercise 14.9 Determining the Half-Life of a First-Order Reaction}

The reaction of \(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}\) with water is a first-order reaction. Figure 14.4 shows how the concentration of \(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}\) changes with time at a particular temperature. (a) From that graph, estimate the half-life for this reaction. (b) Use the half-life from (a) to calculate the rate constant.

\section*{Solution}

Analyze: We are asked to estimate the half-life of a reaction from a graph of concentration versus time and then to use the half-life to calculate the rate constant for the reaction.
Plan: (a) To estimate a half-life, we can select a concentration and then determine the time required for the concentration to decrease to half of that value. (b) Equation 14.15 is used to calculate the rate constant from the half-life.
Solve: (a) From the graph, we see that the initial value of \(\left[\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}\right]\) is \(0.100 M\). The half-life for this firstorder reaction is the time required for \(\left[\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}\right]\) to decrease to 0.050 M , which we can read off the graph. This point occurs at approximately 340 s . (b) Solving Equation 14.15 for \(k\), we have
\[
k=\frac{0.693}{t_{1 / 2}}=\frac{0.693}{340 \mathrm{~s}}=2.0 \times 10^{-3} \mathrm{~s}^{-1}
\]

Check: At the end of the second half-life, which should occur at 680 s , the concentration should have decreased by yet another factor of 2 , to 0.025 M . Inspection of the graph shows that this is indeed the case.

\section*{Practice Exercise}
(a) Using Equation 14.15, calculate \(t_{1 / 2}\) for the decomposition of the insecticide described in Sample Exercise 14.7. (b) How long does it take for the concentration of the insecticide to reach one-quarter of the initial value?
Answer: \(0.478 \mathrm{yr}=1.51 \times 10^{7} \mathrm{~s}\); \(\mathbf{(b)}\) it takes two half-lives, \(2(0.478 \mathrm{yr})=0.956 \mathrm{yr}\)

\section*{The Collision Model}
- In a chemical reaction, bonds are broken and new bonds are formed.
- Molecules can only react if they collide with each other.

\section*{The Collision Model}

Furthermore, molecules must collide with the correct orientation and with enough energy to cause bond breakage and formation.

\section*{Activation Energy}
- In other words, there is a minimum amount of energy required for reaction: the activation energy, \(E_{a}\).
- Just as a ball cannot get over a hill if it does not roll up the hill with enough energy, a reaction cannot occur unless the molecules possess sufficient energy to get over the activation energy barrier.

\section*{Reaction Coordinate Diagrams}

It is helpful to visualize energy changes throughout a process on a reaction coordinate diagram like this one for the rearrangement of methyl isonitrile.

\section*{Reaction Coordinate Diagrams}
- The diagram shows the energy of the reactants and products (and, therefore, \(\Delta E)\).
- The high point on the diagram is the transition state.

- The species present at the transition state is called the activated complex.
- The energy gap between the reactants and the activated complex is the activation energy barrier.

\section*{Maxwell-Boltzmann Distributions}

- Temperature is defined as a measure of the average kinetic energy of the molecules in a sample.
- At any temperature there is a wide distribution of kinetic energies.

\section*{Maxwell-Boltzmann Distributions}

- As the temperature increases, the curve flattens and broadens.
- Thus at higher temperatures, a larger population of molecules has higher energy.

\section*{Maxwell-Boltzmann Distributions}
- If the dotted line represents the activation energy, then as the temperature increases, so does the fraction of molecules that can overcome the activation energy barrier.

- As a result, the reaction rate increases.

\footnotetext{
Chemistry: The Central Science, Eleventh Edition
}

\section*{Maxwell-Boltzmann Distributions}

This fraction of molecules can be found through the expression
\[
f=e \frac{-E_{a}}{R T}
\]
where \(R\) is the gas constant and \(T\) is the Kelvin temperature.

\section*{Arrhenius Equation}

Svante Arrhenius developed a mathematical relationship between \(k\) and \(E_{a}\) :
\[
k=A e^{\frac{-E_{0}}{R T}}
\]
where \(A\) is the frequency factor, a number that represents the likelihood that collisions would occur with the proper orientation for reaction.

\footnotetext{
PEARSON Chemistry: The Central Science, Eleventh Edition
}

\section*{Sample Exercise 14.10 Relating Energy Profiles to Activation Energies and Speed of Reaction}

Consider a series of reactions having the following energy profiles:

Rank the reactions from slowest to fastest assuming that they have nearly the same frequency factors.
Solution
The lower the activation energy, the faster the reaction. The value of \(\Delta E\) does not affect the rate. Hence the order is \((2)<(3)<(1)\).

\section*{Practice Exercise}

Imagine that these reactions are reversed. Rank these reverse reactions from slowest to fastest.
Answer: \((2)<(1)<(3)\) because \(E_{a}\) values are 40,25 , and \(15 \mathrm{~kJ} / \mathrm{mol}\), respectively
\begin{tabular}{|llr|}
\hline PEARSON
\end{tabular} \begin{tabular}{l}
Chemistry: The Central Science, Eleventh Edition \\
By Theodore E. Brown, H. Eugene LeMay, Bruce E. Bursten, and Catherine J. Murphy \\
Wducation \\
With contributions from Patrick Woodward
\end{tabular}\(\quad\)\begin{tabular}{r}
Copyright ©2009 by Pearson Education, Inc. \\
Upper Saddle River, New Jersey 07458 \\
All rights reserved.
\end{tabular}

\section*{Sample Exercise 14.11 Determining the Energy of Activation}

The following table shows the rate constants for the rearrangement of methyl isonitrile at various temperatures (these are the data in Figure 14.12):
\begin{tabular}{ll}
\hline Temperature \(\left({ }^{\circ} \mathrm{C}\right)\) & \(k\left(\mathrm{~s}^{-1}\right)\) \\
\hline 189.7 & \(2.52 \times 10^{-5}\) \\
198.9 & \(5.25 \times 10^{-5}\) \\
230.3 & \(6.30 \times 10^{-4}\) \\
251.2 & \(3.16 \times 10^{-3}\) \\
\hline
\end{tabular}
(a) From these data, calculate the activation energy for the reaction. (b) What is the value of the rate constant at 430.0 K ?

Solution
Analyze: We are given rate constants, \(k\), measured at several temperatures and asked to determine the activation energy, \(E_{a}\), and the rate constant, \(k\), at a particular temperature.
Plan: We can obtain \(E_{\text {a }}\) from the slope of a graph of \(\ln k\) versus \(1 / T\). and the rate constant, \(k\), at a particular temperature. Once we know \(E_{a}\), we can use Equation 14.21 together with the given rate data to calculate the rate constant at 430.0 K .

Sample Exercise 14.11 Determining the Energy of Activation
Solution (continued)
Solve: (a) We must first convert the temperatures from degrees Celsius to kelvins. We then take the inverse of each temperature, \(1 / T\), and the natural log of each rate constant, ln \(k\). This gives us the table shown at the right:
\begin{tabular}{lll}
\hline\(T(\mathrm{~K})\) & \(1 / T\left(\mathrm{~K}^{-1}\right)\) & \(\ln k\) \\
\hline 462.9 & \(2.160 \times 10^{-3}\) & -10.589 \\
472.1 & \(2.118 \times 10^{-3}\) & -9.855 \\
503.5 & \(1.986 \times 10^{-3}\) & -7.370 \\
524.4 & \(1.907 \times 10^{-3}\) & -5.757 \\
\hline
\end{tabular}

A graph of \(\ln k\) versus \(1 / T\) results in a straight line, as shown in Figure 14.17.

4 Figure 14.17 Graphical determination of activation determination of ac
energy. The natural energy. The natural logarithrm of the rate co fearrangement of methyl isonitrile is plotted as a methyl isonitrile is plotted relationship is predicted by the Arrhenius equation giving a slope equal to \(-E_{\alpha} / R\).
\begin{tabular}{|c|c|c|}
\hline & \(1 / T\) & \\
\hline PEARSON & Chemistry: The Central Science, Eleventh Edition & \multirow[t]{2}{*}{Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458} \\
\hline Education & By Theodore E. Brown, H. Eugene LeMay, Bruce E. Bursten, and Catherine J. Murphy & \\
\hline Eaucation & With contributions from Patrick Woodward & All rights reserved. \\
\hline
\end{tabular}

\section*{Sample Exercise 14.11 Determining the Energy of Activation}

Solution (continued)
The slope of the line is obtained by choosing two
well-separated points, as shown, and using the
coordinates of each:

Because logarithms have no units, the numerator in this equation is dimensionless. The denominator has the units of \(1 / T\), namely, \(\mathrm{K}^{-1}\). Thus, the overall units for the slope are K . The slope equals \(-E_{a} / R\). We use the value for the molar gas constant \(R\) in units of \(\mathrm{J} / \mathrm{mol}-\mathrm{K}\) (Table 10.2). We thus obtain

Slope \(=\frac{\Delta y}{\Delta x}=\frac{-6.6-(-10.4)}{0.00195-0.00215}=-1.9 \times 10^{4}\)

Slope \(=-\frac{E_{a}}{R}\)
\(E_{a}=-(\) slope \()(R)=-\left(-1.9 \times 10^{4} \mathrm{~K}\right)\left(8.314 \frac{\mathrm{~J}}{\mathrm{~mol}-\mathrm{K}}\right)\left(\frac{1 \mathrm{~kJ}}{1000 \mathrm{~J}}\right)\)
\(=1.6 \times 10^{2} \mathrm{~kJ} / \mathrm{mol}=160 \mathrm{~kJ} / \mathrm{mol}\)

We report the activation energy to only two significant figures because we are limited by the precision with which we can read the graph in Figure 14.17.
(b) To determine the rate constant, \(k_{1}\), at \(T_{1}=430.0\)

K , we can use Equation 14.21 with \(E_{a}=160 \mathrm{~kJ} / \mathrm{mol}\),
and one of the rate constants and temperatures from
the given data, such as
\(k_{2}=2.52 \times 10^{-5} \mathrm{~s}^{-1}\) and \(T_{2}=462.9 \mathrm{~K}\) :
Thus,
\[
\begin{aligned}
& \ln \left(\frac{k_{1}}{2.52 \times 10^{-5} \mathrm{~s}^{-1}}\right)=\left(\frac{160 \mathrm{~kJ} / \mathrm{mol}}{8.314 \mathrm{~J} / \mathrm{mol}-\mathrm{K}}\right)\left(\frac{1}{462.9 \mathrm{~K}}-\frac{1}{430.0 \mathrm{~K}}\right)\left(\frac{1000 \mathrm{~J}}{1 \mathrm{~kJ}}\right)=-3.18 \\
& \frac{k_{1}}{2.52 \times 10^{-5} \mathrm{~s}^{-1}}=c^{-3.18}=4.15 \times 10^{-2} \\
& k_{1}=\left(4.15 \times 10^{-2}\right)\left(2.52 \times 10^{-5} \mathrm{~s}^{-1}\right)=1.0 \times 10^{-6} \mathrm{~s}^{-1}
\end{aligned}
\]

Note that the units of \(k_{1}\) are the same as those of \(k_{2}\)

Sample Exercise 14.11 Determining the Energy of Activation

\section*{Practice Exercise}

Using the data in Sample Exercise 14.11, calculate the rate constant for the rearrangement of methyl isonitrile at \(280^{\circ} \mathrm{C}\).
Answer: \(2.2 \times 10^{-2} \mathrm{~s}^{-1}\)
\(\qquad\)
\begin{tabular}{|l|l|}
\hline & \\
- Chapter 16 \\
\\
\\
\hline
\end{tabular}```

