Chemistry, The Central Science, 11th edition Theodore L. Brown, H. Eugene LeMay, Jr., and Bruce E. Bursten

Chapter 16 Acids and Bases

John D. Bookstaver St. Charles Community College Cottleville, MO

Therefore, in pure water, $pH = -log (1.0 \times 10^{-7}) = 7.00$ An acid has a higher $[H_3O^+]$ than pure water, so its pH is <7.A base has a lower $[H_3O^+]$ than pure water, so its pH is >7.Solution Type $[H^+]M$ $[OH^-]M$ pH ValueAcidic Neutral Basic>1.0 × 10^-7 <1.0 × 10^-7>1.0 × 10^-7 >1.0 × 10^-7>1.0 × 10^-7 >1.0 × 10^-7>1.0 × 10^-7 >1.0 × 10^-7>1.0 × 10^-7 >7.00		ρ	п	
$pH = -log (1.0 \times 10^{-7}) = 7.00$ An acid has a higher [H ₃ O ⁺] than pure water, so its pH is <7. A base has a lower [H ₃ O ⁺] than pure water, so its pH is >7. Solution Type [H ⁺] (M) [OH ⁻] (M) pH Value Acidic >1.0 × 10 ⁻⁷ < 1.0 × 10 ⁻⁷ < 7.00 Reutral =1.0 × 10 ⁻⁷ > 1.0 × 10 ⁻⁷ = 7.00 Basic <1.0 × 10 ⁻⁷ > 7.00	Therefore	e, in pure wa	ter.	
An acid has a higher $[H_3O^+]$ than pure water, so its pH is <7.	n	H = -log (1.0)	$\times 10^{-7}$ = 7.0	0
[H_3O^+] than pure water, so its pH is <7.	۲ مالمنع مد ۸	$n = \log(1.0)$	\times 10 $) = 7.0$	
SO Its pH IS <7.		nae a nianar i	H.UTI Inan n	lire water
Solution Type [H ⁺] (M) [OH ⁻] (M) pH Value Acidic >1.0 × 10 ⁻⁷ <1.0 × 10 ⁻⁷ <7.00 Neutral =1.0 × 10 ⁻⁷ =1.0 × 10 ⁻⁷ =7.00 Basic <1.0 × 10 ⁻⁷ >1.0 × 10 ⁻⁷ >7.00	An acid r	ias a nigher [1130 J thán þ	are water,
So its pH is >7. [OH ⁻] (M) pH Value Acidic >1.0 × 10 ⁻⁷ <1.0 × 10 ⁻⁷ <7.00 Neutral =1.0 × 10 ⁻⁷ =1.0 × 10 ⁻⁷ =7.00 Basic <1.0 × 10 ⁻⁷ >1.0 × 10 ⁻⁷ >7.00	so its pH	is <7.	1130 J thán þ	are water,
Solution Type $[H^+]$ (M) $[OH^-]$ (M)pH ValueAcidic $>1.0 \times 10^{-7}$ $<1.0 \times 10^{-7}$ <7.00 Neutral $=1.0 \times 10^{-7}$ $=1.0 \times 10^{-7}$ $=7.00$ Basic $<1.0 \times 10^{-7}$ $>1.0 \times 10^{-7}$ >7.00	so its pH	is <7. as a lower [F	I_3O^+] than pu	re water,
Solution Type(H) (W)(OH) (W)pH valueAcidic $>1.0 \times 10^{-7}$ $<1.0 \times 10^{-7}$ <7.00 Neutral $=1.0 \times 10^{-7}$ $=1.0 \times 10^{-7}$ $=7.00$ Basic $<1.0 \times 10^{-7}$ $>1.0 \times 10^{-7}$ >7.00	so its pH A base h so its pH	is <7. as a lower [H is >7.	I_3O^+] than pu	re water,
Acidic $>1.0 \times 10^{-7}$ $<1.0 \times 10^{-7}$ <7.00 Neutral $=1.0 \times 10^{-7}$ $=1.0 \times 10^{-7}$ $=7.00$ Basic $<1.0 \times 10^{-7}$ $>1.0 \times 10^{-7}$ >7.00	An acid r so its pH A base h so its pH	is <7. as a lower [H is >7.	I_3O^+] than pu	re water,
Neutral $=1.0 \times 10^{-7}$ $=1.0 \times 10^{-7}$ $=7.00$ Basic $<1.0 \times 10^{-7}$ $>1.0 \times 10^{-7}$ >7.00	An acid r so its pH A base h so its pH	is <7. as a lower [H is >7.	I ₃ O+] than pu [он⁻] (м)	pH Value
Basic $<1.0 \times 10^{-7}$ $>1.0 \times 10^{-7}$ >7.00	An acid r so its pH A base h so its pH Solution Type Acidic	is <7. as a lower [H is >7. $\frac{IH^{+1}(M)}{>1.0 \times 10^{-7}}$	$I_{3}O^{+}$] than pu [OH ⁻] (M) $< 1.0 \times 10^{-7}$	pH Value <7.00
	An acid r so its pH A base h so its pH Solution Type Acidic Neutral	is <7. as a lower [H is >7. $\frac{IH^{+1} (M)}{> 1.0 \times 10^{-7}}$ $= 1.0 \times 10^{-7}$	$\frac{[OH^{-1}](M)}{(1.0 \times 10^{-7})^{-7}}$	PH Value <7.00 =7.00

Sample Exercise 16.6 Calculating pH from [H+] Calculate the pH values for the two solutions described in Sample Exercise 16.5. Solution Analyze: We are asked to determine the pH of aqueous solutions for which we have already calculated [H+]. Plan: We can calculate pH using its defining equation, Equation 16.17. Solve: (a) In the first instance we found [H+]. to be $1.0 \times 10^{-12} M$. $pH = -log(1.0 \times 10^{-12}) = -(-12.00) = 12.00$ Because 1.0×10^{-12} has two significant figures, the pH has two decimal places, 12.00. (b) For the second solution, $[H^+] = 5.6 \times 10^{-6} M$. Before performing the calculation, it is helpful to estimate the pH. To do so, we note that [H⁺] lies between 1×10^{-6} and 1×10^{-5} $1\times 10^{-6} < 5.6\times 10^{-6} < 1\times 10^{-5}$ Thus, we expect the pH to lie between 6.0 and 5.0. We use Equation 16.17 to calculate the pH. $pH = -\log(5.6 \times 10^{-6}) = 5.25$ Check: After calculating a pH, it is useful to compare it to your prior estimate. In this case the pH, as we predicted, falls between 6 and 5. Had the calculated pH and the estimate not agreed, we should have reconsidered our calculation or estimate or both. **Practice Exercise** (a) In a sample of lemon juice $[H^+]$ is $3.8 \times 10^{-4} M$. What is the pH? (b) A commonly available windowcleaning solution has $[OH^-] = 1.9 \times 10^{-6} M$. What is the pH? Answers: (a) 3.42, (b) $[H^+] = 5.3 \times 10^{-9} M$, so pH = 8.28

How Do We Measure pH?

For more accurate measurements, one uses a pH meter, which measures the voltage in the solution.

	[HCOOH], <i>M</i>	[H ₃ O+], <i>M</i>	[HCOO ⁻], <i>M</i>
Initially	0.10	0	0
Change			
At Equilibrium			
		-	I Ad

Solution (Continued)		HCOOH(aq) =	\Rightarrow H ⁺ (aq) +	HCOO ⁻ (aq)
concentration of $H^+(aq)$ that is due to the	Initial	0.10 M	0	0
autoionization of H_2O . Notice also that the	Change	$-4.2 imes 10^{-3} M$	$+4.2 \times 10^{-3} M$	$+4.2 \times 10^{-3} M$
amount of HCOOH that ionizes is very small	Equilibrium	$(0.10 - 4.2 \times 10^{-3}) M$	$4.2 \times 10^{-3} M$	$4.2 imes 10^{-3} M$
compared with the initial concentration of the				
using the subtraction yields $0.10 M^{\circ}$	(0.10 - 4.2 ×	10^{-3}) $M \simeq 0.10 M$		
using, the subtraction yields 0.10 m.		<i>,</i>		
We can now insert the equilibrium centrations into the expression for K_a :	$K_a = \frac{(4.2 \times 1)^2}{2}$	$\frac{10^{-3})(4.2 \times 10^{-3})}{0.10} = 1.8$	\times 10 ⁻⁴	
Check: The magnitude of our answer is reason	nable because l	K_a for a weak acid is us	sually between 10	⊢ ³ and 10 ⁻¹⁰
Practice Exercise Niacin, one of the B vitamins, has the followin	ng molecular st	ructure:		
		—н		
A 0.020 M solution of niacin has a pH of 3.26	. What is the ac	id-dissociation constar	nt, K_a , for niacin?	

Calculating pH from K _a We next set up a table					
	[C ₂ H ₃ O ₂], <i>M</i>	[H₃O⁺], <i>M</i>	[C ₂ H ₃ O ₂ -], <i>M</i>		
Initially	0.30	0	0		
Change					
At Equilibrium					
We are assumir compared to 0.3	ng that x will be v 30 and can, there	ery small fore, be ignor	ed.		

Calculating pH from K_a

 $pH = -log [H_3O^+]$ = -log (2.3 × 10⁻³) = 2.64

Sample Exercise 16.12 Using K_a to Calculate pH **Solution** $0.20 - x \simeq 0.20$ (Continued) $\frac{x^2}{0.20} = 4.9 \times 10^{-10}$ We next make the simplifying approximation that *x*, the amount of acid that dissociates, is small compared with the initial concentration of acid; that is, $x^2 = (0.20)(4.9 \times 10^{-10}) = 0.98 \times 10^{-10}$ $x = \sqrt{0.98 \times 10^{-10}} = 9.9 \times 10^{-6} M = [H^+]$ Thus, Solving for *x*, we have A concentration of 9.9 × 10^{-6} M is much smaller than 5% of 0.20, the initial HCN $pH = -log[H^+] = -log(9.9 \times 10^{-6}) = 5.00$ concentration. Our simplifying approximation is therefore appropriate. We now calculate the pH of the solution: **Practice Exercise** The Ka for niacin (Practice Exercise 16.10) is 1.5×10^{-5} . What is the pH of a 0.010 M solution of niacin? **Answer:** 3.41

$$1.8 \times 10^{-5} = \frac{(x)^2}{(0.15)}$$
$$(1.8 \times 10^{-5}) (0.15) = x^2$$
$$2.7 \times 10^{-6} = x^2$$
$$1.6 \times 10^{-3} = x$$

Determine whether aqueous solutions of each of the following salts will be acidic, basic, or neutral: (a) $Ba(CH_3COO)_2$, (b) NH_4Cl , (c) CH_3NH_3Br , (d) KNO_3 , (e) $Al(ClO_4)_3$.

Solution

Analyze: We are given the chemical formulas of five ionic compounds (salts) and asked whether their aqueous solutions will be acidic, basic, or neutral.

Plan: We can determine whether a solution of a salt is acidic, basic, or neutral by identifying the ions in solution and by assessing how each ion will affect the pH. **Solve:**

(a) This solution contains barium ions and acetate ions. The cation, Ba^{2+} , is an ion of one of the heavy alkaline earth metals and will therefore not affect the pH (summary point 4). The anion, CH_3COO- , is the conjugate base of the weak acid CH_3COOH and will hydrolyze to produce OH^- ions, thereby making the solution basic (summary point 2).

(b) This solution contains NH_4^+ and Cl^- ions. NH_4^+ is the conjugate acid of a weak base (NH_3) and is therefore acidic (summary point 3). Cl^- is the conjugate base of a strong acid (HCl) and therefore has no influence on the pH of the solution (summary point 1). Because the solution contains an ion that is acidic (NH_4^+) and one that has no influence on pH (Cl^-), the solution of NH_4Cl will be acidic.

(c) This solution contains $CH_3NH_3^+$ and Br^- ions. $CH_3NH_3^+$ is the conjugate acid of a weak base ($CH_3NH_2^+$, an amine) and is therefore acidic (summary point 3). is the conjugate base of a strong acid (HBr) and is therefore pH-neutral (summary point 1). Because the solution contains one ion that is acidic and one that is neutral, the solution of CH_3NH_3Br will be acidic.

(d) This solution contains the \vec{K}^+ ion, which is a cation of group 1A, and the ion NO_3^- , which is the conjugate base of the strong acid HNO_3 . Neither of the ions will react with water to any appreciable extent (summary points 1 and 4), making the solution neutral.

Sample Exercise 16.18 Determining Whether Salt Solutions Are Acidic, Basic, or Neutral

Solution (Continued)

(e) This solution contains Al^{3+} and ClO_4^- ions. Cations, such as Al^{3+} , that are not in groups 1A or 2A are acidic (summary point 5). The ClO_4^- ion is the conjugate base of a strong acid (HClO₄) and therefore does not affect pH (summary point 1). Thus, the solution of $Al(ClO_4)_3$ will be acidic.

Practice Exercise

In each of the following, indicate which salt in each of the following pairs will form the more acidic (or less basic) 0.010 M solution: (a) NaNO₃, or Fe(NO₃)₃; (b) KBr, or KBrO; (c) CH₃NH₃Cl, or BaCl₂, (d) NH₄NO₂, or NH₄NO₃.

Answers: (a) $Fe(NO_3)_3$, (b) KBr, (c) CH_3NH_3Cl , (d) NH_4NO3

Because K_a for $H_2 IO_4$ is 0.2 × 10° (Table 10.5), we calculate K_b for $H_2 IO_4$ to be 1.6 × 10°. This is more than 10⁵ times larger than K_a for $H_2 PO_4^{-2}$; thus, the reaction shown in Equation 16.46 predominates over that in Equation 16.45, and the solution will be basic.

Acids

Sample Integrated Exercise Putting Concepts Together

Phosphorous acid (H₃PO₃) has the following Lewis structure

(a) Explain why H_3PO_3 is diprotic and not triprotic. (b) A 25.0-mL sample of a solution of H_3PO_3 is titrated with 0.102 *M* NaOH. It requires 23.3 mL of NaOH to neutralize both acidic protons. What is the molarity of the H_3PO_3 solution? (c) The original solution from part (b) has a pH of 1.59. Calculate the percent ionization and K_{a1} for H_3PO_3 , assuming that $K_{a1} >> K_{a2}$. (d) How does the osmotic pressure of a 0.050 *M* solution of HCl compare qualitatively with that of a 0.050 *M* solution of H_3PO_3 ? Explain.

Solution

We will use what we have learned about molecular structure and its impact on acidic behavior to answer part (a). We will then use stoichiometry and the relationship between pH and $[H^+]$ to answer parts (b) and (c). Finally, we will consider acid strength in order to compare the colligative properties of the two solutions in part (d).

(a) Acids have polar H—X bonds. From Figure 8.6 we see that the electronegativity of H is 2.1 and that of P is also 2.1. Because the two elements have the same electronegativity, the H—P bond is nonpolar. (Section 8.4) Thus, this H cannot be acidic. The other two H atoms, however, are bonded to O, which has an electronegativity of 3.5. The H—O bonds are therefore polar, with H having a partial positive charge. These two H atoms are consequently acidic.

 (\mathbf{b}) The chemical equation for the neutralization reaction is

 $H_3PO_3(aq) + 2 NaOH(aq) \rightarrow Na_2HPO3(aq) + 2 H_2O(1)$

