

Nervous System (NS) – Cerebral Cortex

Dr. Othman Al-Shboul Department of Physiology

Organization of the Nervous System

Based on differences in the structure, location, and functions, nervous system is subdivided into:

1. Central nervous system (CNS)

- Brain and spinal cord
- Contained within bone

2. Peripheral nervous system (PNS)

- All nerve tissue outside CNS
- Cranial and spinal nerves
- Sensory & motor divisions

Generalized Model of Function of NS

Cells of the Nervous System

- × Consists of 2 kinds of cells:
 - + Neurons: functional units of NS
 - + Supporting cells (= glial cells)
 - × Maintain homeostasis
 - × Are 5X more common than neurons
 - × <u>Schwann</u> and <u>satellite</u> cells in the PNS
 - <u>Oligodendrocytes</u>, <u>microglia</u>, <u>astrocytes</u> and <u>ependymal</u> cells in the CNS

Neurons

× Gather and transmit information by:

- + Responding to stimuli
- + Producing and sending electrochemical impulses
- + Releasing chemical messages

× Have a cell body, dendrites and axon

- Cell body:
 - contains the nucleus
 - Cell body is the nutritional center and makes macromolecules
 - Groups of cell bodies in CNS are called nuclei; in PNS are called ganglia
- Dendrites receive information, convey it to cell body
- Axons conduct impulses away from cell body

Functional Classes of Neurons

Functions of the Glial Cells

Neuroglia	Function
Schwann Cells	surround axons of all peripheral nerve fibres, form the myelin sheath.
Oligodendrocytes	form myelin sheath around central axons producing the white matter of central nervous system.
Astrocytes	cover capillaries of brain to form the blood brain barrier and help regulate passage of molecules from blood to brain.
Ependyma	line the ventricles or brain cavities and central canal of spinal cord.
Microglia	phagocytic amoeboid cells in central nervous system that remove foreign and degenerate material from the brain.

Protection of CNS

- Enclosed by hard, bony structures (skull bones)
- Wrapped by three protective and nourishing membranes meninges
- Floats in cushioning fluid cerebrospinal fluid (CSF)
- Blood-brain barrier (BBB) limits access of blood-borne materials into brain tissue

Cerebrospinal Fluid (CSF)

Four major fluid compartments in the brain:

- blood that flows through entire brain structures
- 2. interstitial fluid bathing neurons and neuroglia
- 3. cerebrospinal fluid (CSF), circulates around brain ventricles, and spinal cord
- 4. intracellular fluid within brain cells

Gazzin et al., 2012

Cerebrospinal Fluid (CSF)

- CSF: colorless protein-poor serous plasma filtrate surrounding brain & spinal cord,
- × ≈ 150 mL
- Occupying mainly the ventricular system, the subarachnoid space, and the central canal of the spinal cord
- CSF functions:
- Shock absorption; fluid cushion for the brain and spinal cord
- * Second circulatory fluid; delivering oxygen and nutrients to the nervous tissue
- Major route for removing potentially harmful brain metabolites; Serves as a lymphatic system for the brain

- Copyright © 2005 Pearson Prentice Hall, Inc.
- × Allows the brain to float, thereby reducing its effective weight in situ
- Conduit for hormones that are secreted by hypothalamic neurons and act at remote sites in the brain

Blood Brain Barrier (BBB)

- Between the blood and brain fluid (at capillaries)
- All over the brain <u>except</u> some areas e.g., hypothalamus
- × Allows only certain compounds to enter brain
- Capillaries are not as leaky as those in body
 - Gaps between adjacent cells are closed by tight junctions
- Consists of:
 - capillary endothelial cells + their basement membranes
 - the processes of astrocytes (astrocytic endfeet)

The Central Nervous System (CNS)

Consists of:

The brain
 Spinal cord

The Brain

Major brain functions (Brain functions as a whole (neurons linked via synapsis):

- Regulates internal environment
- Experiences emotions
- Voluntarily controls movements
- Perceives own body and surroundings
- Engages in other higher cognitive processes (e.g. thought and memory)

Brain Regions

- 1. Brain stem (Medulla, pons, midbrain)
- 2. Cerebellum
- 3. Forebrain
 - a. Diencephalon
 - Hypothalamus
 - Thalamus
 - b. Cerebrum
 - Basal nuclei
 - Cerebral cortex

Cerebral Cortex

- The outermost sheet of neural tissue (gray matter) of the cerebrum of the brain
 - × Convoluted
 - Total surface area: 2200 cm2 (2.5 ft2)
 - × Thickness: 1.5 mm 4.5 mm
 - Weight: 600 gm (40 % of total brain weight)
 - × 180 gm ------ neurons (10-15 billion neurons)
 - × 420 gm ----- glial cells

 Function: motor control of the body & information processing center

Functions of Cortical Lobes

Somatosensory Cortex

□ The somatosensory cortex:

- ✓ located in the front portion of each parietal lobe
- Immediately behind the central sulcus
- ✓ Post-central gyrus
- It is the site for initial cortical processing and perception of:
- <u>Somesthetic</u> input (sensations from the surface of the body, such as touch, pressure, heat, cold, and pain)
 <u>Proprioceptive</u> input (awareness of body position)
- Each region within the somatosensory cortex receives input from a specific area of the body.
- Different parts of the body are not equally represented
- The size of each body part in this homunculus indicates the relative proportion of the somatosensory cortex devoted to that area. (e.g., fingers >>> trunk)
- Reception of <u>opposite side</u> inputs

Primary Motor Cortex

Primary motor cortex:

- ✓ Immediately in front of the central sulcus
- ✓ Pre-central gyrus
- ✓ Next to the somatosensory cortex
- Confers voluntary control over movement produced by skeletal muscles.
- Controls opposite side muscles of the body
- The extent of representation in the motor cortex is proportional to the <u>precision</u> and <u>complexity</u> of motor skills required of the respective part

□ E.g., lips are >>> trunk area

Motor Homunculus

Proportional representation of the different body parts and areas in brain hemispheres

Brain Plasticity

- When an area of the brain associated with a particular activity is destroyed, other areas of the brain may gradually assume some or all of the functions of the damaged region
- Mechanism:
- **???** formation of <u>new neural pathways</u> (not new neurons, but new connections between existing neurons)

Control of Language

Wernicke's Area

- Role with the <u>language comprehension</u>;
 - Formulating coherent patterns of speech that are transferred via a bundle of fibers to broca's area
 - Understanding both spoken and written messages
 - Inputs from
 - Visual cortex
 - . Auditory cortex
- Damage: patient looses the ability to arrange read or heard words into coherent thought "Wernicke's Aphasia"

Broca's area

- Initiates and executes the expression of individual words or even short phrases (i.e., word formation)
 - Responsible for formation of words by exciting simultaneously the laryngeal muscles, respiratory muscles, and muscles of the mouth (via it's connection with motor cortex)
 - Near motor area for mouth, tongue & vocal cords
 - Damage; patient is capable of deciding what he or she wants to say but cannot make the vocal system emit words "Motor or Broca's Aphasia"

Electroencephalogram (EEG)

- The recording of electrical activity (potentials) along the scalp
- A tracing (measurement) of <u>voltage fluctuations</u> resulting from <u>ionic</u> <u>current</u> flows within the neurons of the brain versus time recorded from <u>electrodes</u> placed over scalp in a specific array
- Deep parts of the brain are not well sampled
- EEG Elements:
 - Active electrodes: Attached to the scalp
 - Reference electrode: Mastoid, nose, ear lobe...

- Amplifier
- The EEG records differences in voltage difference in electrical potential from one electrode to another

EEG Rhythms

- Beta (β) waves
 - Small in amplitude
 - More evident anteriorly
 - Drugs, such as barbiturates and benzodiazepines, augment beta waves

Alpha (α) waves

- Most common in adults.
- Posteriorly (occipital) more than anteriorly
- Especially prominent with closed eyes and with relaxation.
- Disappears normally with attention (e.g., mental arithmetic, stress, opening eyes).
- In most instances, it is regarded as a normal waveform.

Theta (θ) waves

- Normally seen in sleep
- In awake adults, these waves are abnormal if they occur in excess.

Delta (δ) waves

- Normally seen in deep sleep.
- Delta waves are abnormal in the awake adult.
- Often, they have the largest amplitude of all waves. Theta and delta waves are known collectively as <u>slow waves</u>.

EEG Uses

1. To distinguish various stages of sleep

- A clinical tool in the diagnosis of cerebral dysfunction (e.g. Epilepsy)
- Legal determination of brain death

Nervous System – Brain & cranial nerves

The Thalamus

- "<u>Relay station</u>" and synaptic integrating center for preliminary processing of all sensory input on its way to the cortex
- It screens out insignificant signals and routes the important sensory impulses to appropriate areas of the somatosensory cortex (e.g., attention to stimuli of interest)

The Hypothalamus

- Important <u>link</u> between the autonomic nervous system and the endocrine system via the pituitary gland
- × Brain area most involved in directly regulating internal environment
 - Controls body temperature
 - Controls thirst and urine output
 - Controls food intake
 - Controls anterior pituitary hormone secretion
 - Produces posterior pituitary hormones
 - Controls uterine contractions and milk ejection
 - Serves as a major ANS coordinating center
 - Plays role in emotional and behavioral patterns
 - Participates in sleep-wake cycle

The Basal Nuclei

Masses of <u>gray matter</u> (neuron cell bodies) located deep within the cerebral white matter

Functions:

- modifying ongoing activity in motor pathways
- Fine tuning muscle tone; inhibiting muscle tone throughout the body

Proper muscle tone is normally maintained by a balance of excitatory and inhibitory inputs to the neurons that innervate skeletal muscles)

The Basal Nuclei

- Improper function: Parkinson's disease
- Deficiency of <u>dopamine</u>, an important neurotransmitter in the basal nuclei
- Signs and symptoms:
 - Increased muscle tone, or rigidity
 - Involuntary, useless, & unwanted movements, such as <u>resting tremors</u> (e.g., hands rhythmically shaking)
 - Slowness in initiating and carrying out different motor behaviors

Cerebellum

- Attached to the back of the upper portion of the brain stem, Lies underneath the occipital lobe of the cortex
- Does not initiate movement, but contributes to coordination, precision, and accurate timing.

Three different parts

- 1. Vestibulocerebellum
 - Important in maintaining balance and controls eye movements
- 2. Spinocerebellum
 - Enhances muscle tone and coordinates skilled, voluntary movements
- 3. Cerebrocerebellum
 - Plays role in planning and initiating voluntary activity by providing input to cortical motor areas
 - Stores procedural memories

Damage to the cerebellum does <u>not cause paralysis</u>, but instead produces disorders in fine movement, equilibrium & posture (<u>intention tremor</u>; oscillating to-and-fro movements of a limb as it approaches its intended destination)

Brain Stem

□ The brain stem is a vital link between the spinal cord and higher brain regions

Main functions:

- The majority of the 12 pairs of cranial nerves arise from the brain stem
- Centers that control heart and blood vessel function, respiration, and many digestive activities
- Plays role in regulating muscle reflexes involved in equilibrium and posture
- Reticular formation within brain stem receives and integrates all incoming sensory synaptic input; important for brain arousal (being awake & alert)

Limbic System

- Includes portions of the hypothalamus and other forebrain structures that encircle brain stem
- × Responsible for
 - + Emotion
 - + Basic, inborn behavioral patterns related to survival and perpetuation of the species
 - + Plays important role in motivation and learning

Peripheral Nervous System (PNS)

Peripheral Nervous System

Autonomic Nervous System (ANS)

× Composed of:

- 1. Sympathetic Nervous System
- 2. Parasympathetic Nervous System

Autonomic Nerve Pathway

Two-neuron chain

Sympathetic Nerve Pathway

Sympathetic nerve fibers originate in the <u>thoracic</u> and <u>lumbar</u> regions of the spinal cord

□ <u>Short</u> preganglionic fibers

Parasympathetic Nerve Pathway

Parasympathetic

preganglionic fibers arise from the <u>cranial</u> (brain) and <u>sacral</u> (lower spinal cord) areas of the CNS

Long preganglionic fibers

Neurotransmitters of the ANS

- All preganglionic fibers release Ach
- Sympathetic postganglionic fibers release NE/E mainly

Parasympathetic postganglionic fibers release Ach

Postganglionic Nerve Terminals

Dual innervation of sympathetic and parasympathetic nervous systems

- Sympathetic and parasympathetic nervous systems generally exert
 opposite effects in a particular organ
- Both systems increase the activity of some organs and reduce the activity of others.
- Usually both systems are partially active; sympathetic or parasympathetic tone or tonic activity, but activity of one division can dominate over the other

Advantage Of Dual Autonomic Innervation

Enables precise control over an organ's activity

Dual innervation of sympathetic and parasympathetic nervous systems

- Exceptions to general rule of dual reciprocal innervation by the two branches of autonomic nervous system
 - + Most arterioles and veins receive only sympathetic nerve fibers (arteries and capillaries are not innervated)
 - + Most sweat glands are innervated only by sympathetic nerves
 - + Salivary glands are innervated by both ANS divisions but activity is not antagonistic – both stimulate salivary secretion

Sympathetic dominance

FIGHT or FLIGHT

Fight-or-flight response

in emergency or stressful situations, such as a physical threat from the outside

- Heart: beats more rapidly and more forcefully,
- Blood pressure is elevated by generalized constriction of the blood vessels,
- **Respiratory airways** open wide to permit maximal air flow,
- Glycogen (stored sugar) and fat stores are broken down to release extra fuel into the blood,

Sympathetic dominance

FIGHT or FLIGHT

- Blood vessels supplying skeletal muscles dilate (open more widely).
 → Providing increased flow of oxygenated, nutrient-rich blood to the skeletal muscles in anticipation of strenuous physical activity.
- **The pupils** dilate and the eyes adjust for far vision, letting the person visually assess the entire threatening scene.
- **Sweating** is promoted in anticipation of excess heat production by the physical exertion.

Sympathetic dominance

FIGHT or FLIGHT

Inhibition of digestive and urinary activities; not essential in meeting the threat

Parasympathetic dominance

Rest-and-digest in quiet, relaxed situations

The Adrenal Medulla

Medulla secretes: Epinephrine (mainly) & Norepinephrine

The Adrenal Medulla

- Part of the sympathetic nervous system
- Receives preganglionic fibers
- Does not have
 postganglionic fibers
- Instead, releases E & NE into the blood

Receptor Types For Autonomic Neurotransmitters

- Specific neurotransmitter action results from specificity of receptors
- × 2 types of receptors in ANS:
 - CholinergicAdrenergic

Cholinergic Receptors

 Nicotinic receptors: found on the postganglionic cell bodies in all autonomic ganglia
 Bind ACh

Muscarinic receptors:

found on effector cell membranes (smooth muscle, cardiac muscle, and glands).

Bind ACh

Adrenergic Receptors

1.

2.

Adrenergic Receptors

- $\alpha 1 \rightarrow \text{Excitatory}; \text{ e.g., arteriolar constriction}$
- $\alpha 2 \rightarrow \text{Inhibitory}; \text{ e.g., GI smooth muscle}$
- $\beta 1 \rightarrow \text{Excitatory}$; e.g., increased rate and force of cardiac contraction
- $\beta 2 \rightarrow \text{Inhibitory;}$ e.g., arteriolar & bronchiolar (dilation)

Sympathetic vs. Parasympathetic

FEATURE	SYMPATHETIC SYSTEM	PARASYMPATHETIC SYSTEM
Origin of Preganglionic Fiber	Thoracic and lumbar regions of spinal cord	Brain and sacral region of spinal cord
Origin of Postganglionic Fiber (location of ganglion)	Sympathetic ganglion chain (near spinal cord) or collateral ganglia (about halfway between spinal cord and effector organs)	Terminal ganglia (in or near effector organs)
Length and Type of Fiber	Short cholinergic preganglionic fibers Long adrenergic postganglionic fibers	Long cholinergic preganglionic fibers Short cholinergic postganglionic fibers
Effector Organs Innervated	Cardiac muscle, almost all smooth muscle, most exocrine glands, and some endocrine glands	Cardiac muscle, most smooth muscle, most exocrine glands, and some endrocrine glands
Types of Receptors for Neurotransmitters	For preganglionic neurotransmitter: nicotinic For postganglionic neurotransmitter: $\alpha_1, \alpha_2, \beta_1, \beta_2$	For preganglionic neurotransmitter: nicotinic For postganglionic neurotransmitter: muscarinic
Dominance	Dominates in emergency "fight-or-flight" situations; prepares body for strenuous physical activity	Dominates in quiet, relaxed situations; promotes "general housekeeping" activities such as digestion

Composed of the axons of the motor neurons which innervate skeletal muscles

Motor neurons:

- The cell bodies are within the spinal cord. (except motor neurons supplying muscles in the head, they are in the brain stem)
- Release acetylcholine (ACh)
- Can <u>only stimulate</u> skeletal muscles (no inhibition)

The somatic system is under voluntary control

However, much of the skeletal muscle activity involving posture, balance, and stereotypical movements is subconsciously controlled

Neuromuscular Junction (NMJ)

Axon of motor neuron

Neuromuscular junction

Neuromuscular Junction (NMJ)

Nerve and muscle cells do not actually come into direct contact at a neuromuscular junction

The space, or cleft, between these two structures is too large to permit electrical transmission of an impulse between them

The chemical messenger is acetylcholine (ACh)

Somatic vs. Autonomic

FEATURE	AUTONOMIC NERVOUS SYSTEM	SOMATIC NERVOUS SYSTEM
Site of Origin	Brain or spinal cord	Spinal cord for most; those supplying muscles in head originate in brain
Number of Neurons from Origin in CNS to Effector Organ	Two-neuron chain (preganglionic and postganglionic)	Single neuron (motor neuron)
Organs Innervated	Cardiac muscle, smooth muscle, exocrine and some endocrine glands	Skeletal muscle
Type of Innervation	Most effector organs dually innervated by the two antagonistic branches of this system (sympathetic and parasympathetic)	Effector organs innervated only by motor neurons
Neurotransmitter at Effector Organs	May be acetylcholine (parasympathetic terminals) or norepinephrine (sympathetic terminals)	Only acetylcholine
Effects on Effector Organs	Either stimulation or inhibition (antagonistic actions of two branches)	Stimulation only (inhibition possible only centrally through IPSPs on dendrites and cell body of motor neuron)
Types of Control	Under involuntary control	Subject to voluntary control; much activity subconsciously coordinated
Higher Centers Involved in Control	Spinal cord, medulla, hypothalamus, prefrontal association cortex	Spinal cord, motor cortex, basal nuclei, cerebellum, brain stem ⁶⁴

Somatic vs. Autonomic

Spinal Cord Reflexes

Reflex

 Any response that occurs automatically without conscious effort

 Motor response to a specific sensory stimulus

Reflex arc

Reflex arc:

 The neural pathway involved in accomplishing reflex activity

Five basic components:

- 1. Receptor
- 2. Afferent pathway
- 3. Integrating center
- 4. Efferent pathway
- 5. Effector

Types of Reflexes

A. Based on complexity:

- 1. Simple, or basic reflexes,
 - ✓ Built-in, unlearned responses
 - ✓ e.g., pulling the hand away from a burning hot object
 - ✓ Usually integrated in spinal cord or brain stem
- 2. Acquired, or conditioned reflexes,
 - Result of practice and learning
 - ✓ Usually integrated at higher brain levels

Types of Reflexes

B. Based on neural processing level:

- 1. Cranial reflexes
 - e.g., Pupillary reflex

2. Spinal reflexes

- * Reflex activity between afferent input and efferent output without involving the brain
- * The controlling center of the spinal reflex is located in one or more spinal cord segments
- e.g., Skeletal muscle stretch reflex

C. Based on synapse number

- 1. Monosynaptic reflexes
 - A. Two neurons (one synapse)
- 2. Polysynaptic reflexes

A. Many neurons (many synapses)

Types of Reflexes

D. Based on effector

- 1. Autonomic [visceral] reflexes Smooth muscle, cardiac muscle, glands
- 2. Somatic [muscle] reflexes Skeletal muscles

E. Based on side of effect

1. Ipsilateral reflexes

The response is on the same side of the body as the stimulus

2. Contralateral [crossed extensor] reflexes

The response is on the opposite side of the body as the stimulus

Spinal Reflexes

Integrating center for the reflex activity between afferent input and efferent output is located in one or more spinal cord segments

The brain can facilitate or inhibit them

Examples:

1. Stretch reflex
Stretch reflex

- Two muscle receptors are important for proprioceptive inputs:
- 1. Muscle spindles (monitor changes in muscle length)
- 2. Golgi tendon organs (monitor changes in muscle tension)

Muscle Spindles

- Distributed throughout skeletal muscle fibers
- Each spindle consists of 3-10 specialized muscle fibers enclosed in a connective tissue capsule (intrafusal fibers)
- Each intrafusal fiber has
 - Noncontractile central portion
 - Contractile ends

skeletal muscle fibers

Muscle Spindles

Action of Muscle Spindles

Patellar Tendon Reflex (A Stretch Reflex)

Golgi Tendon Organs

- In the tendons of the muscle
- Respond to changes in the muscle's tension
- Increased firing with increased muscle tension
- Its firing leads to inhibition of α motorneuron and thus relaxation of skeletal muscle

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Golgi Tendon Reflex

- Opposite of those elicited by muscle spindle reflexes
- Golgi tendon organs help ensure smooth onset and termination of muscle contraction
- Particularly important in activities involving rapid switching between flexion and extension such as in running

The END