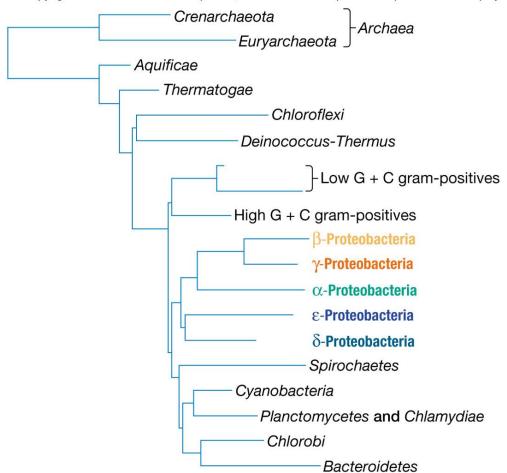
Chapter 20

The Proteobacteria

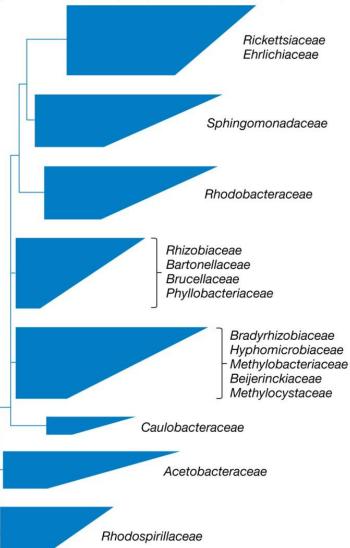

The Phylum Proteobacteria

- the largest phylogenetically coherent bacterial group with more than 500 genera
- remarkable diverse morphologically, physiologically, and other ways
- volume 2 of *Bergey's Manual (2nd edition*) is devoted to this group of bacteria

Lineages of Proteobacterium

- proteobacteria may have arose from a single photosynthetic ancestor
- 16S rRNA shows five distinct lineages
- Alphaproteobacterium α-proteobacteria
- *Betaproteobacterium* β-proteobacteria
- *Gammaproteobacterium* γ-proteobacteria
- Deltaproteobacterium δ-proteobacteria
- *Epsilonproteobacterium* E-proteobacteria

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

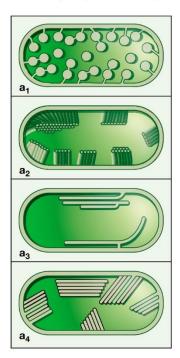


Class Alphaproteobacteria

- seven orders, 20 families
- *Rickettsiales* may have been the earliest αproteobacteria
- most of the oligotrophic (low levels of nutrients) bacteria
- most abundant bacteria in oceans
- evolved to live within plants and animals resulting in genome reduction or expansion
- metabolically diverse
 - methylotrophy, chemolithotrophs, nitrogen fixers

Figure 20.2; phylogenetic relationships among major families within the alpha proteobacteria

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display



Purple Nonsulfur Bacteria

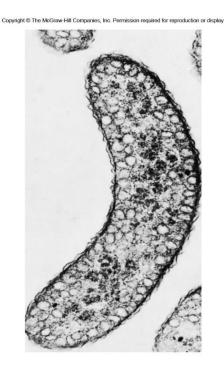
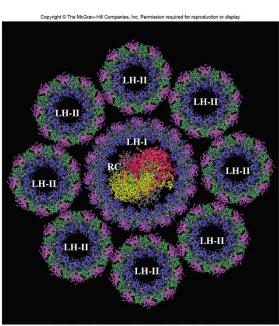

- with one exception (genus *Rhodocyclus*) all are α-proteobacteria
- metabolically flexible
 - normally grow anaerobically as anoxygenic photoorganoheterotrophs
 - possess bacteriochlorophylls *a* or *b* in photosystems located in membranes that are continuous with plasma membrane
 - some can oxidize sulfide, but not elemental sulfur, to sulfate

Figure 20.3; photosynthetic apparatus of purple bacteria

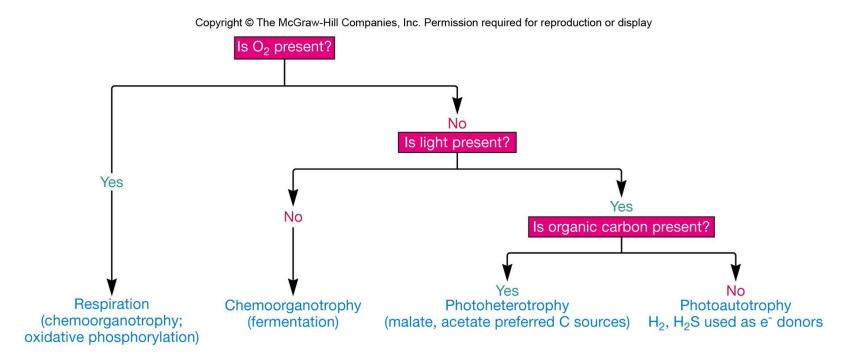
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display



(a) Intracytoplasmic membranes

(b) R. rubrum

Reprinted from The Shorter Bergey's Manual of Determinative Bacteriology, 8e, John G. Holt, Editor, 1977 © Bergey's Manual Trust. Published by Williams & Wilkins Baltimore, MD



Xiche Hu, Thorsten Ritz, Ana Damjanovic, Felix Autenrieth, and Klaus, Schulten. Photosynthetic apparatus of purple bacteria. *Quarterly Reviews of Biophysics*, 35:1–62, 2002. Cambridge University Press

Purple Nonsulfur Bacteria...

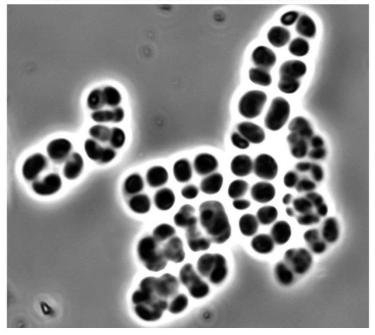
- in absence of light
 - most grow aerobically as chemoorganoheterotrophs
 - some carry out fermentation,
 photoheterotrophy, photoautotrophy, and
 grow anaerobically
- *Rhodosprillum* best studied metabolic diversity

Figure 20.4; metabolic flexibility of Rodsopririllum

Purple Nonsulfur Bacteria...

- *Rhodospirillum* industrial importance
 - produces H₂
 - novel biodegradable plastic
 - oxidize carbon monoxide to carbon dioxide
- morphologically diverse
 - most motile by polar flagella
- found in mud and water of lakes and ponds with abundant organic matter and low sulfide levels; some marine species

Purple Nonsulfur Bacteria...


- can produce cellular cysts
 - resting cells
 - resistant to desiccation but less tolerant of heat and UV than bacterial endospores
 - -made in response to nutrient limitation
 - have thick outer coat and store polyhydroxybutyrate

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

(a)

Berleman et al., Hypercyst Mutants in Rhodospirillum centenum Identify Regulatory Loci Involved in Cyst Cell Diff erentiation *J. Bacteriol.* 2004 186, fig. 1, pg. 5836 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

(b)

Berleman et al., Hypercyst Mutants in Rhodospirillum centenum Identify Regulatory Loci Involved in Cyst Cell Diff erentiation *J. Bacteriol.* 2004 186, fig. 1, pg. 5836

Rickettsia

• genus *Rickettsia*

- order *Rickettsiales*; family *Rickettsiaceae*

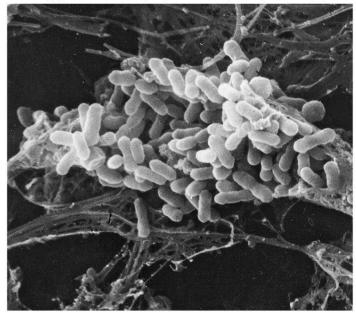
- very small, gram-negative, nonflagellated, diverse morphology
- all species are parasitic or mutualistic
 - grows in vertebrate erythrocytes, macrophages, vascular endothelial cells
 - live in blood sucking arthropods vectors or primary hosts

Rickettsia...

- genome sequence similar to mitochondria
 - arose from endosymbiotic association
 - free living, aerobic bacterium became intracellular parasite of proto-eukaryotic cell that lacked organelles
 - gene reduction occurred and loss of free living ability

Rickettsia Metabolism

lack glycolytic pathway


– do not use glucose as energy source

- oxidize glutamate and TCA cycle intermediates (e.g., succinate)
- take up and use ATP and other materials from host cell

Important Pathogens

- *Rickettsia prowazekii* and *Rickettsia typhi* typhus fever
- *Rickettsia rickettsii* Rocky Mountain Spotted Fever
- reproduction
 - enters host by phagocytosis
 - escapes phagosome
 - reproduces in cytoplasm
 - host cell bursts


Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

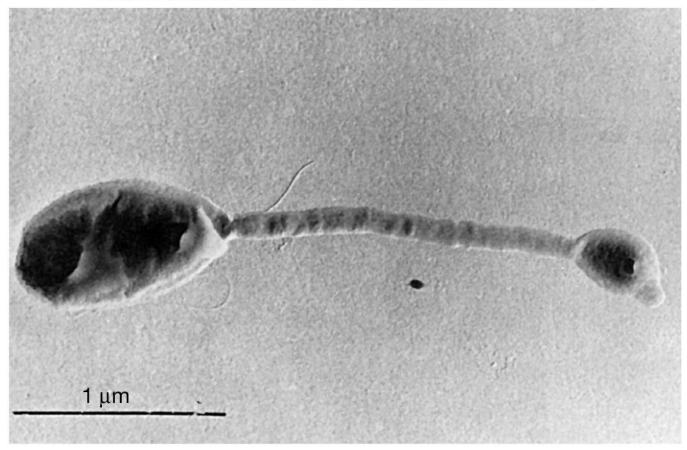
(a)

David J. Silverman, Anna Waddell In Vitro Studies of Rickettsia-Host Cell Interactions: Ultrastructural Study of Rickettsia prowazekii-Infected Chicken Embryo Fibroblasts, Infect Immun. 1980 August; 29(2): 778–790

Copyright C The McGraw-Hill Companies, Inc. Permission required for reproduction or display

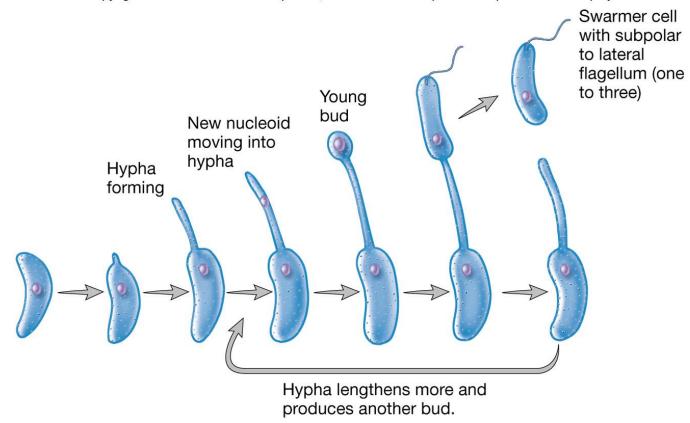
(b)

ASM MicrobeLibrary.org © Walker


Caulobacteraceae and *Hyphomicrobiaceae*

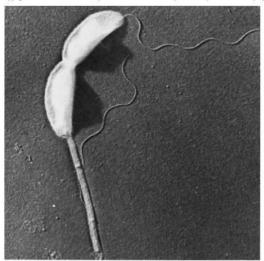
- rods or cocci with an appendage
- life cycle
 - -prostheca (pl., prosthecae) or stalk
 - extension of cell, including plasma membrane, that is narrower than mature cell
 - reproduction by budding
 - progeny cell is a bud that first appears as a small protrusion on parent cell and enlarges to form mature cell

Genus Hyphomicrobium


- prosthecate, budding bacteria
- aerobic chemoheterotrophs
 - grow on ethanol, acetate, and one-carbon molecules (facultative methylotroph)
 - e.g., methanol, formate, and formaldehyde
- frequently attach to solid objects in aquatic and terrestrial environments
 - may be 25% of total bacterial population in oligotrophic (nutrient-poor) freshwater habitats

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

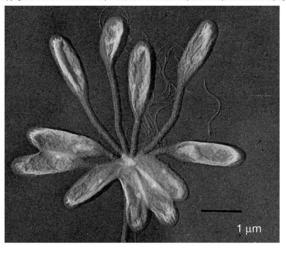
From J.T. Staley, M.P. Bryant, N. Pfenning and J.G. Holt (Eds), *Bergey's Manual of Systematic Bacteriology*, Vol. 3. © 1989 Williams and Wilkins Co., Baltimore


Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Genus Caulobacter

- may be polarly flagellated rods or may possess prostheca and holdfast
 - –used to attach to solid substrata with what is known as the strongest biological adhesion molecule
 - –prostheca lacks cytoplasmic components


Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display


(a)

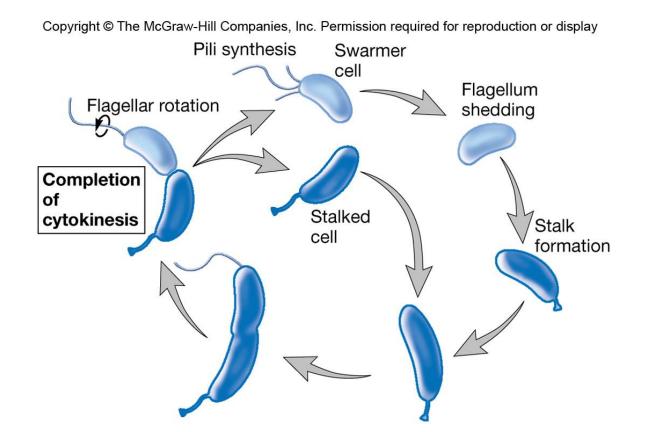
Courtesy of Jeanne S. Poindexter, Long Island Univ.

Copyright C The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

(c)

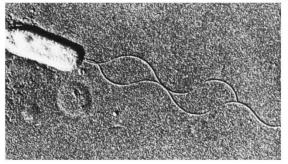
From J.T. Staley, M.P. Bryant, N. Pfenning and J.G. Holt (Eds), Bergey's Manual of Systematic Bacteriology, Vol. 3. © 1989 Williams and Wilkins Co., Baltimore


(b)

Courtesy of Jeanne S. Poindexter, Long Island Univ.

Genus Caulobacter

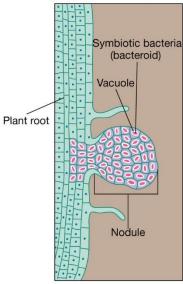
- usually found in oligotrophic aquatic and terrestrial habitats
 - may absorb nutrients released from hosts
 - long prosthecae may improve nutrient uptake
- reproduction


asymmetric transverse binary fission

Genus Rhizobium

- gram-negative, pleomorphic, motile rods
 - often contain poly-β-hydroxybutyrate granules
- grow symbiotically as nitrogenfixing bacteroids within root nodule cells of legumes
 - -most successful plant family on earth

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display



Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

From N.R. Krieg and J.G. Holt (Eds), Bergeys Manual of Systematic Bacteriology, Vol. 1, 1984. Williams and Wilkins Co., Baltimore

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

(C) © John Kaprielian, Th e National Audubon Society Collection/Photo Researchers

Genus Agrobacterium

- do not stimulate nodule formation or fix nitrogen
- invade crown, roots, and stems of many plants
 - transform infected plant cells into autonomously proliferating tumors
- e.g., Agrobacterium tumefaciens
 - causes crown gall disease by means of tumor-inducing (Ti) plasmid

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

© John D. Cunningham/ Visuals Unlimited

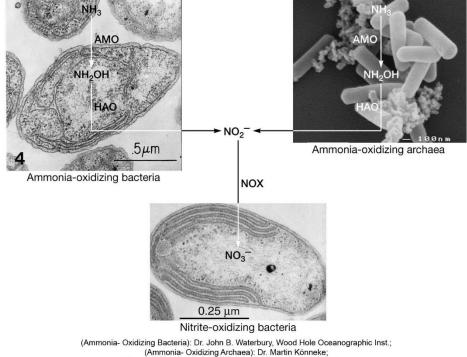
Genus Brucella

 important human and animal pathogen

– undulant fever – zoonosis

• tiny, faintly staining coccobacilli

Nitrifying Bacteria


- very diverse chemolithoautotrophs

 nitrification gain electrons from
 oxidation of
 - ammonium to nitrate or nitrite
 - nitrite further oxidized to nitrate

Nitrification

- ammonia \rightarrow nitrite \rightarrow nitrate
- conversion of ammonia to nitrate by action of two genera
 - e.g., *Nitrosomonas* ammonia to nitrite
 - e.g., *Nitrobacter* nitrite to nitrate
- fate of nitrate
 - easily used by plants
 - lost from soil through leaching or denitrification

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Nitrifying Bacteria

- divided into several taxa
 - class Alphaproteobacteria
 - e.g., genus Nitrobacter
 - class *Betaproteobacteria*
 - e.g., genera *Nitrosomonas* and *Nitrosospira*
 - -class Gammaproteobacteria
 - family *Ectothiorhodospiraceae*

– e.g., genus *Nitrococcus*

- family *Chromatiaceae*
 - e.g., genus Nitrosococcus

Table 20.2

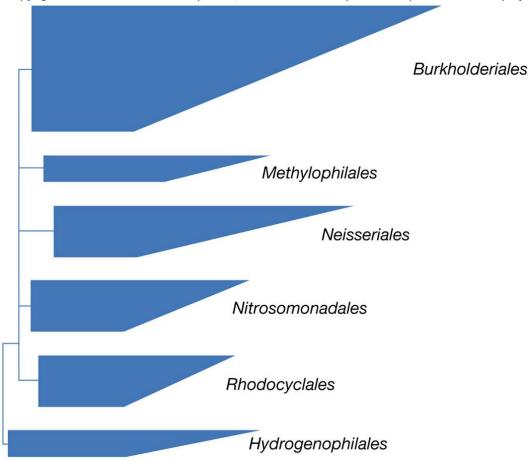

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Table 20.2 Selected Characteristics of Representative Nitrifying Bacteria						
Species	Cell Morphology and Size (µm)	Reproduction	Motility	Cytomembranes	G + C Content (mol%)	Habitat
Ammonia-Oxidizing Bacteria						
Nitrosomonas europaea (β-proteobacteria)	Rod; 0.8–1.1 × 1.0–1.7	Binary fission	-	Peripheral, lamellar	50.6-51.4	Soil, sewage, freshwater, marine
Nitrosococcus oceani (γ-proteobacteria)	Coccoid; 1.8–2.2 in diameter	Binary fission	+; 1 or more subpolar flagella	Centrally located parallel bundle, lamellar	50.5	Obligately marine
Nitrosospira briensis (β-proteobacteria)	Spiral; 0.3–0.4 in diameter	Binary fission	+ or -; 1 to 6 peritrichous flagella	Rare	53.8–54.1	Soil
Nitrite-Oxidizing Bacteria						
Nitrobacter winogradskyi (α-proteobacteria)	Rod, often pear- shaped; 0.5–0.9 \times 1.0–2.0	Budding	+ or –; 1 polar flagellum	Polar cap of flattened vesicles in peripheral region of the cell	61.7	Soil, freshwater, marine
<i>Nitrococcus mobilis</i> (γ-proteobacteria)	Coccoid; 1.5–1.8 in diameter	Binary fission	+; 1 or 2 subpolar flagella	Tubular cytomembranes randomly arranged in cytoplasm	61.3 (1 strain)	Marine

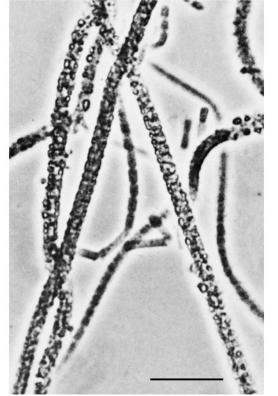
From Brenner, D. J., et al., eds. 2005. Bergey's Manual to Systemic Bacteriology, 2d ed. Vol. 2: The Proteobacteria. Garrity, G. M. Ed-in-Chief. New York: Springer.

Class Betaproteobacteria

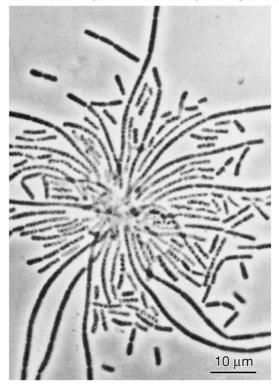
- seven orders, 12 families
- considerable metabolic diversity
 - overlap α-proteobacteria metabolically but generally use decomposed organic matter anoxically
 – some use hydrogen, methane, ammonia, volatile fatty acids

Order Neisseriales

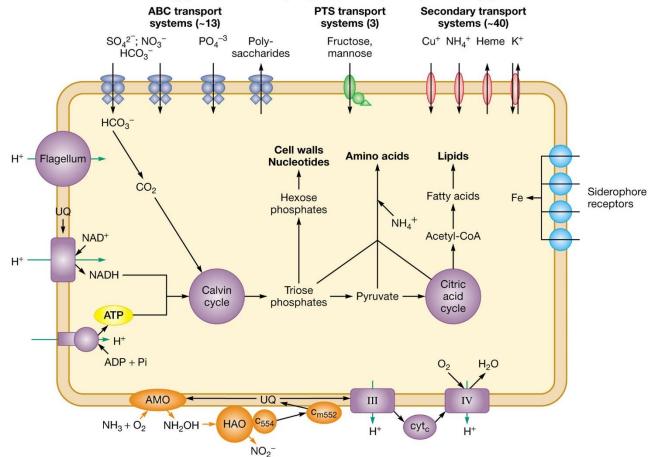
- one family, Neisseriaceae and 15 genera
- Genus Neisseria
 - nonmotile, gram-negative cocci
 - most often occur in pairs with adjacent sides flattened
 - may have capsules and fimbriae
 - aerobic chemoorganotrophs
 - oxidase positive and usually catalase positive


Genus Neisseria...

- may have capsules and fimbriae
- inhabitants of mucous membranes of mammals
 - some human pathogens
 - Neisseria gonorrhoeae gonorrhea
 - Neisseria meningitidis meningitis


Order Burkholderiales

- well-known genera
 - Burkholderia, Bordetella, Sphaerotilus, and Leptothrix
- some members have a sheath
 - hollow tubelike structure surrounding chain of cells
 - may contain ferric or manganic oxides
 - functions
 - attachment to surfaces
 - obtaining nutrients from slowly running water
 - protection against predators


Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Mulder, E.G. & van Veen, W.L., Investigations on the Sphaeerotilus-Leptothrix group, Antonie von Leeuwenhoek *Journal of Microbiology and Serology* 29: 121–153. Kluwer Publishers

 W L van Veen, E G Mulder, and M H Deinema Th e Sphaerotilus-L eptothrix group of bacteria, *Microbiol. Mol. Biol. Rev.* 1978 42: 329–356, fig. 6, p. 334. American Society of Microbiology

Genus Burkholderia

- gram-negative, non-spore-forming, straight rods
 - most motile with single flagellum or tuft of polar flagella
- aerobic and mesophilic
- nonfermentative chemoorganotrophs
 - catalase positive; often oxidase positive
 - most use poly-β-hydroxybutyrate as carbon reserve

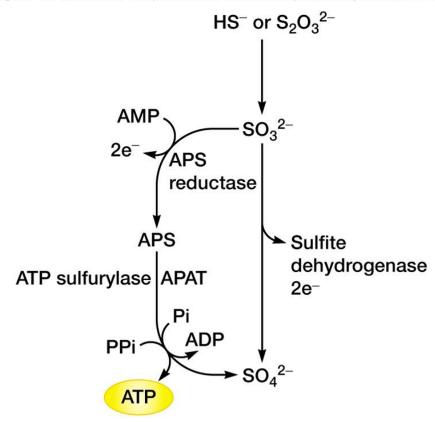
e.g., Burkholderia Cepacia

- plant pathogen
- has become a major nosocomial pathogen
 - particular problem for cystic fibrosis patients

Nitrogen Fixation by *Burkholderia* and *Ralstonia*

- form symbiotic associations with legumes similar to that formed by rhizobia
- have nodulation genes (*nod*) similar to rhizobia suggesting a common genetic origin
 - genetic information may have been obtained through lateral gene transfer

Genus *Bordetella*


• gram-negative coccobacilli

– some have capsules

- aerobic chemoorganotrophs
 - respiratory metabolism
 - require organic sulfur and amino acids for growth
- mammalian parasites that multiply in respiratory epithelial cells
 - nonmotile, encapsulated species
 - whooping cough and kennel cough

Order Nitrosomonadales

- number of chemolithotrophs
 - e.g., two genera of nitrifying bacteria
 - Nitrosomonas and Nitrosospira
 - oxidize ammonia to nitrite
 - enzyme ammonia monooxygenase (AMO)
 - enzyme hydroxylamine oxidoreductase
 - also auxotrophic metabolism
 - fixes CO₂ in Calvin cycle

Order Hydrogenophilales

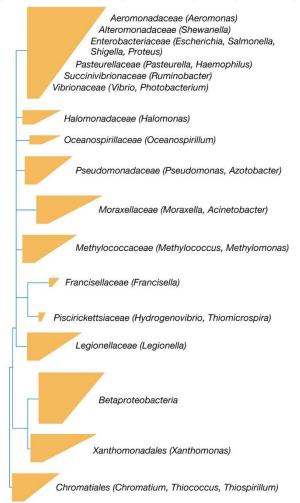
- contains genus *Thiobacillus*
 - Well-studied chemolithotroph
 - prominent member of colorless sulfur bacteria
 - chemolithotrophs that oxidize sulfur compounds
 - other colorless sulfur bacteria are in class Gamma proteobacteria

Table 20.4

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Table 20.4	Colorless Sulfur-Oxidizing Genera						
Genus	Cell Shape	Motility; Location of Flagella	G + C Content (mol%)	Sulfur Deposit ^a	Nutritional Type		
Thiobacillus	Rods	+; polar	62–67	Extracellular	Obligate or facultative chemolithotroph		
Thiomicrospira	Spirals, comma, or rod shaped	– or +; polar	39.6-49.9	Extracellular	Obligate chemolithotroph		
Thiobacterium	Rods embedded in gelatinous masses	-	N.A. ^b	Intracellular ^c	Probably chemoorgano- heterotroph		
Thiospira	Spiral rods, usually with pointed ends	+; polar (single or in tufts)	N.A.	Intracellular	Unknown		
Macromonas	Rods, cylindrical or bean shaped	+; polar tuft	67	Intracellular ^c	Probably chemoorgano- heterotroph		

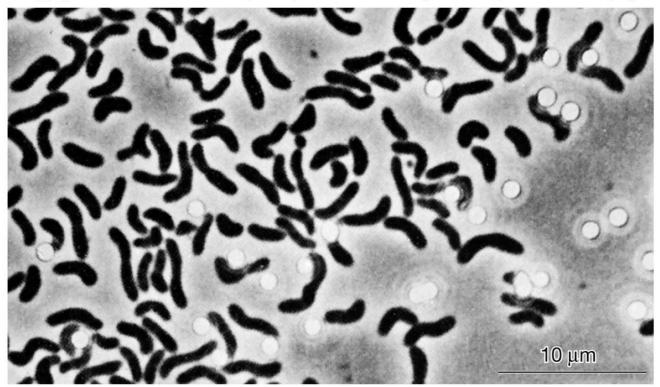
^a When hydrogen sulfide is oxidized to elemental sulfur. ^b N.A., data not available.


^c May use sulfur oxidation to detoxify H_2O_2 .

Genus Thiobacillus

found in soil and aquatic habitats

 production of sulfuric acid can cause corrosion of concrete and metal structures


- may increase soil fertility by releasing sulfate
- used in leaching metals from low grade metal ores

Class Gammaproteobacteria

- largest subgroup of proteobacteria

 contains 14 orders and 28 families
- very diverse physiological types
 - chemoorganotrophs, photolithotrophs, chemolithotrophs, methylotrophs
 - aerobic and anaerobic
- many deeply branching groups

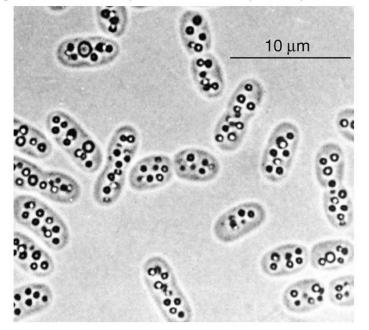
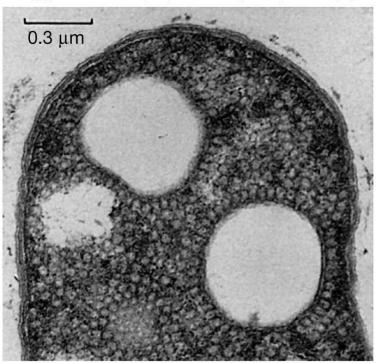

From M.P. Starr, et al. (Eds), The Prokaryotes, Springer- Verlag

Table 20.5

Table 20.5	Characteristics of Selected y-Proteobacteria						
Genus	Dimensions (µm) and Morphology	G + C Content (mol%)	Oxygen Requirement	Other Distinctive Characteristics			
Azotobacter	1.5–2.0; ovoid cells, pleomorphic, peritrichous flagella or nonmotile	63.2-67.5	Aerobic	Can form cysts, fix nitrogen nonsymbi- otically			
Beggiatoa	$1-200 \times 2-10$; colorless cells form filaments, either single or in colonies	35-39	Aerobic or microaerophilic	Gliding motility; can form sulfur inclu- sions with hydrogen sulfide present			
Chromatium	$1-6 \times 1.5-16$; rod-shaped or ovoid, straight or slightly curved, polar flagella	48-50	Anaerobic	Anoxygenic photolithoautotroph that can use sulfide; sulfur stored within the cell			
Ectothiorho- dospira	0.7–1.5 in diameter; vibrioid- or rod-shaped, polar flagella	61.4-68.4	Anaerobic, some aerobic or microaerophilic	Internal lamellar stacks of membranes; deposits sulfur granules outside cells			
Escherichia	1.1–1.5 \times 2–6; straight rods, peri- trichous flagella or nonmotile	48-59	Facultatively anaerobic	Mixed acid fermenter; formic acid converted to H_2 and CO_2 , lactose fer- mented, citrate not used			
Haemophilus	<1.0 in width, variable lengths; coccobacilli or rods, nonmotile	37-44	Aerobic or facul- tatively anaerobic	Fermentative; requires growth factors present in blood; parasites on mucous membranes			
Leucothrix	Long filaments of short cylindrical cells, usually holdfast is present	46-51	Aerobic	Dispersal by gonidia, filaments don't glide; rosettes formed; heterotrophic			
Methylococcus	0.8–1.5 \times 1.0–1.5; cocci with capsules, nonmotile	59-65	Aerobic	Can form cysts; uses methane, methanol, and formaldehyde as sole carbon and energy sources			
Photobacteriun	$n = 0.8-1.3 \times 1.8-2.4$; straight, plump rods with polar flagella	39-44	Facultatively anaerobic	Two species can emit blue-green light; Na ⁺ needed for growth			
Pseudomonas	0.5–1.0 $ imes$ 1.5–5.0; straight or slightly curved rods, polar flagella	58-69	Aerobic or facul- tatively anaerobic	Respiratory metabolism with oxygen or nitrate as acceptor; some use H_2 or CO as energy source			
Vibrio	0.5–0.8 \times 1.4–2.6; straight or curved rods with sheathed polar flagella	38–51	Facultatively anaerobic	Fermentative or respiratory metabolism; sodium ions stimulate or are needed for growth; oxidase positive			


The Purple Sulfur Bacteria

- placed in order *Chromatiales*
 - divided into two families,
 Chromatiaceae and
 Ectothiorhodospiraceae
 - Family *Ectothiorhodospiraceae* contains eight genera

From M.P. Starr, et al. (Eds), The Prokaryotes, Springer-Verlag

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

From J.T. Staley, M.P. Bryant, N. Pfenning and J.G. Holt (Eds), Bergey's Manual of Systematic Bacteriology, Vol. 3. © 1989 Williams and Wilkins Co., Baltimore

Family Chromatiaceae

- strict anaerobes
- usually photoautolithotrophs
 - use H₂S as electron donor
 - deposit sulfur granules internally
 - often eventually oxidize sulfur to sulfate
 - may also use hydrogen as electron donor
- usually found in anaerobic, sulfide-rich zones of lakes
 - can cause large blooms in bogs and lagoons

From ASM News 53(2): cover, 187, American Society for Microbiology. Photo by H. Kaltwasser

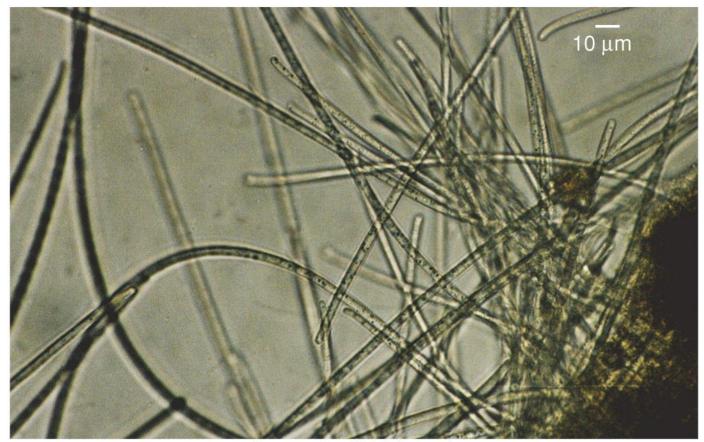
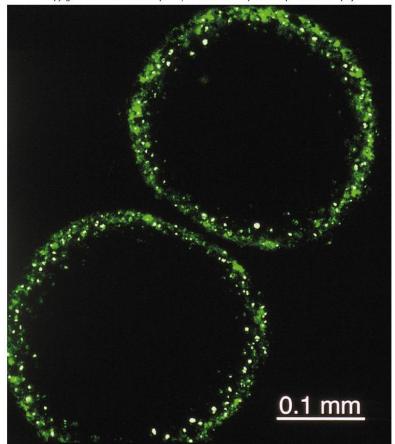
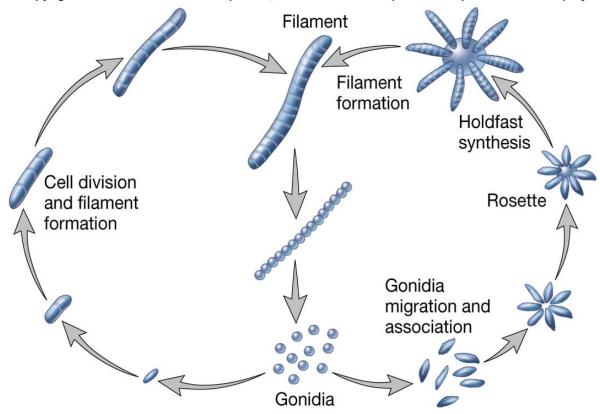



Image courtesy Mark Schneegurt

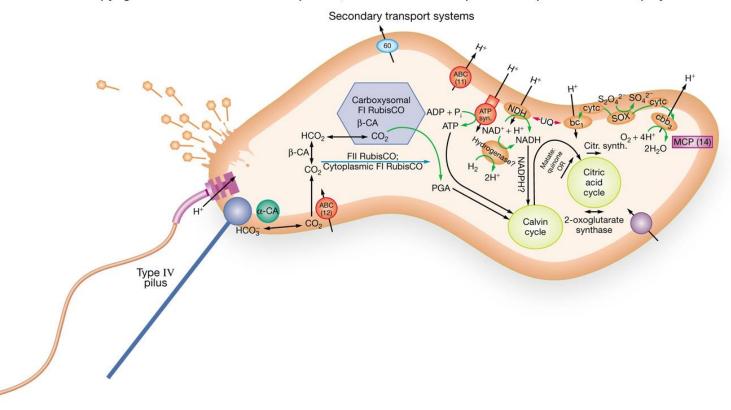
Order *Thiotrichales*

- contains three families
 - -largest is *Thiotrichaceae*
 - contains several genera of that oxidize sulfur
 - rods and filamentous forms
 - best studied genera are *Beggiatoa, Leucothrix,* and *Thiothrix*


Reprinted with permission from Schulz; H.N., Brinkhoff, T., Ferdelman, T.G., Hernandez Marine, M., Teske, A., and Jorgensen, B.B. 1999. Dense Populations of a Giant Sulfur Bacterium in Namibian Shelf Sediments, *Science* 284, 493–495, fig 1. © 1999 American Association for the Advancement of Science. Image courtesy of Heide Schulz

Genus Beggiatoa

- filaments lack sheath
- metabolically versatile
 - can oxidize H₂S to sulfur
 - deposited internally in pockets formed by invaginations of plasma membrane
 - can grow heterotrophically with acetate as a carbon source
 - some may incorporate CO₂ autotrophically
 - grow in sulfide-rich habitats


Genus Thiomargarita

- among largest bacteria
- over 100 microns in diameter and hundreds of centimeters long
- Beggiatoa, Thioploca, Thiomargarita grow in bundles, appear hollow

Genus Leucothrix

- aerobic chemoorganotrophs
- forms filaments or trichomes up to 400 microns long
- marine, complex lifestyle in which dispersal is by formation of gonidia

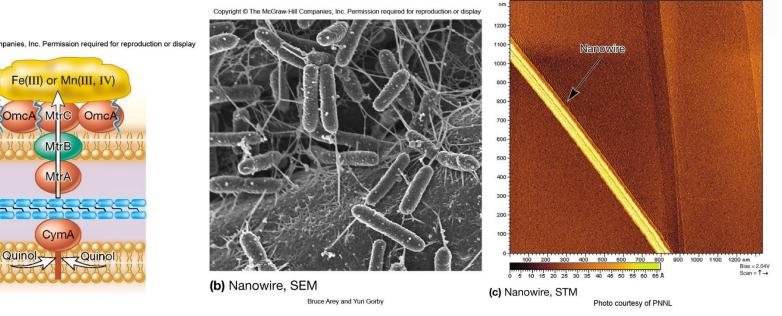


Genus *Thiothrix*

- related to *Leucothrix* with gonidia
- chemolithotrophic
 - oxidize hydrogen sulfide
 - deposit sulfur granules internally
 - mixotrophic
 - use inorganic energy source and organic carbon source
- found in sulfide-rich flowing water and activated sludge sewage systems

Genus Thiomcrospira

- polyphyletic γ- ε-proteobacteria
- unique environment
 - hydrothermal vent deep sea microbe
 - can utilize differences in dissolved CO₂
 - multienzyme complex (SOX) for sulfur oxidation
 - aerobic oxygen is electron acceptor
 - prophage in chromosome


Order Methylococcales

- contains family *Methylococcaceae*; seven genera
- morphologically diverse
 - e.g., genus *Methylococcus* spherical, nonmotile
 - e.g., genus *Methylomonas* straight, curved, or branched rods with single polar flagella
 - almost all form resting stage (cystlike structure)
- methylotrophs
 - use reduced one-carbon compounds as sole carbon and energy source

Methane Oxidation

- occurs in complex arrays of intracellular membranes
- oxidized to methanol and then to formaldehyde
 - electrons donated to electron transport chain for ATP synthesis
 - formaldehyde can be assimilated into cell material

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

OM

PS

PG

IM

(a)

Order Legionellaceae

- family *Legionellacaea* – genus *Legionella*
- family *Coxiellaceae*
 - genera Coxiella and Rickettsiella
- all are intracellular pathogens
 dimorphic lifestyle (two forms)

Genus Legionella

- *L. pneumophilia* intensely studied
 - causative agent Legionnaire's disease
 - transmission through aerosols
 - intracellular pathogen of protozoa
 - invade cooling towers, air conditioning, hot tubs
 - gram-negative rods that replicates by binary fission

Genus Legionella

- Life cycle in Protist
 - replicative forms (RFs) reside in host vacuole (replicative endosome)
 - RFs differentiate into mature intracellular forms (MIFs) which are the infectious form
 - MIF are metabolically dormant, heat tolerant, and resistant to antibiotics
 - Hsp60 is invasin used to invade host cell

Genus Coxiella

- host range
 - birds, insects, fish, rodents, sheep, goats, humans
- transmitted through aerosol
- life cycle similar to *L. pneumophilia*
 - small cell variant (SCV) enters cell by phagocytosis
 - phagosome low pH triggers SCV to become metabolically active
 - SCV differentiates into large cell variant (LCV)
 - replicates by binary fission, are infectious
 - long-term survival outside the host

Order Pseudomonadales

- contains family *Pseudomonadaceae*
 - *Pseudomonas* is the most important genus in the order Pseudomonadales
 - heterogenous 60 species
 - gram-negative straight or slightly curved rods
 - 0.5 to 1.0 μm by 1.5 to 5.0 μm in length
 - motile by one or several polar flagella
 - lack prosthecae or sheaths

Pseudomonas

- chemoheterotrophs with respiratory metabolism
 - usually use oxygen as electron acceptor
 - sometimes use nitrate as electron acceptor
 - have functional TCA cycle
 - most hexoses are degraded by Entner-Duodoroff pathway

Practical Importance of Pseudomonads

- degrade wide variety of organic molecules
 - mineralization microbial breakdown of organic materials to inorganic substrates
- important experimental subjects
- some are major animal and plant pathogens
- some cause spoilage of refrigerated food

 can grow at 4°C

Genus Azotobacter

- often pleomorphic, motile rods
- aerobic, catalase positive
- chemoorganotrophs
- widespread in soil and water

Order Alteromonadales

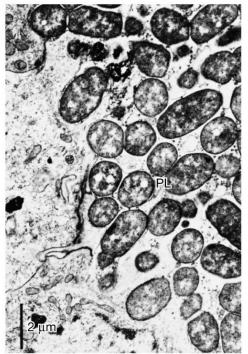
- Genus Altermonas
 - strictly aerobic, nonspore-forming, straight or curved rods, motile with single polar flagella
 - mesophilic, require sodium ions for growth

Genus Shewanella

- found in seawater, lake sediments, salted foods
- facultatively anaerobic
- diverse electron acceptors used, e.g.,
 - uranium, chromium, neptunium, plutonium, selnite, vanadate, tellurite
 - excellent candidate for bioremediation of contaminated radionuclides

Genus *Shewanella*...

- dissimilatory metal reduction


 no assimilation of metals
 - evolved strategies for enabling use of insoluble metals such as Fe(III) or Mn(IV) as electron acceptors
 - localize cytochromes in outer membrane
 - electron shuttles transfer electrons to mineral surface

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

© Kenneth Lucas, Steinhart Aquarium/ Biological Photo Service

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Courtesy of James G. Morin, University of California Los Angeles

Order Vibrionales

- contains one family, *Vibrionaceae*; eight genera
- most are aquatic, most free-living
 - straight or curved rods, oxidase positive, flagellated
 - some important pathogens
 - some symbiotic in luminous organs of fish
- closely related to two other orders
 - Enterobacteriales and Pasteurellales

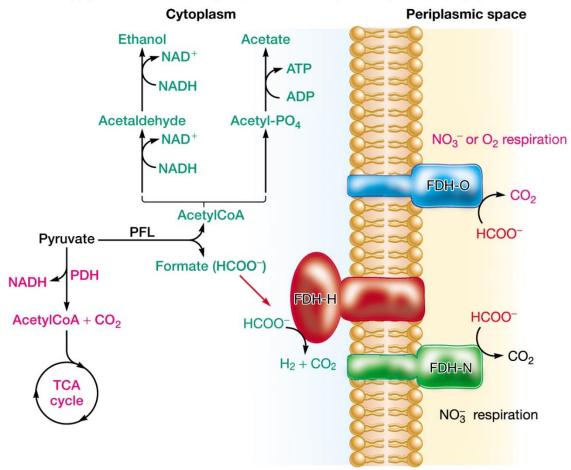
Vibrio Cholerae

- pathogen that causes cholera
- genome has been sequenced
 - has two circular chromosomes
 - copies of some genes present on both chromosomes
 - cholera toxin gene is integrated phage on chromosome 1

Table 20.6

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Table 20.6 Characteristics of Families of Facultatively Anaerobic Gram-Negative Rods


Characteristics	Enterobacteriaceae	Vibrionaceae	Pasteurellaceae
Cell dimensions	$0.31.0\times1.06.0~\mu\text{m}$	$0.31.3\times1.03.5\mu\text{m}$	$0.20.4\times0.42.0\mu\text{m}$
Morphology	Straight rods; peritrichous flagella or nonmotile	Straight or curved rods; polar flagella; lateral flagella may be produced on solid media	Coccoid to rod-shaped cells, sometimes pleomorphic; nonmotile
Physiology	Oxidase negative	Oxidase positive; all can use D-glucose as sole or principal carbon source	Oxidase positive; heme and/or NAD ⁺ often required for growth; organic nitrogen source required
G + C content	38-60%	38–51%	38-47%
Symbiotic relationships	Some parasitic on mammals and birds; some species are plant pathogens	Most not pathogens; several inhabit light organs of marine organisms	Parasites of mammals and birds
Representative genera	Escherichia, Shigella, Salmo- nella, Citrobacter, Klebsiella, Enterobacter, Erwinia, Serratia, Proteus, Yersinia	Vibrio, Photobacterium	Pasteurella, Haemophilus

From Garrity, G. M., editor-in-chief. Bergey's Manual of Systematic Bacteriology, vol. 2. Copyright © 2005 New York: Springer. Reprinted by permission.

V. fischeri, V. harveyi

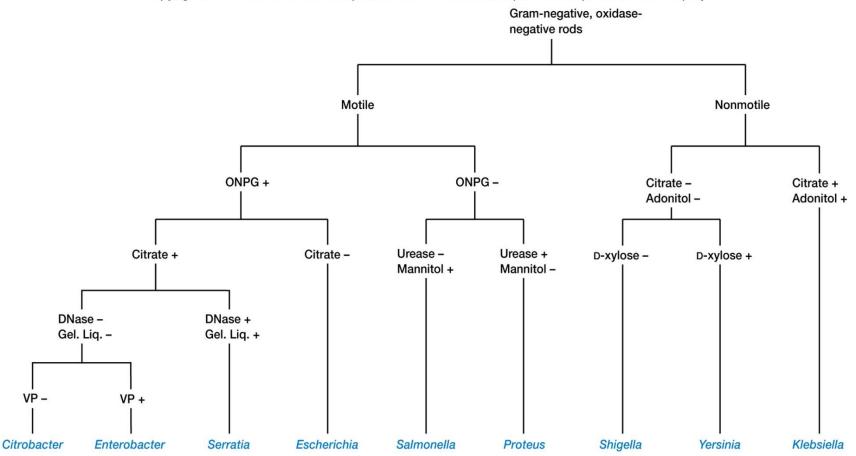
- free-living
- capable of bioluminescence
 - emission of light catalyzed by luciferase
 - symbiotic relationship with fish organs
 - also observed in at least two species of
 Photobacterium

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Order *Enterobacteriales*

• one family, *Enterobacteriaceae*; 44 genera

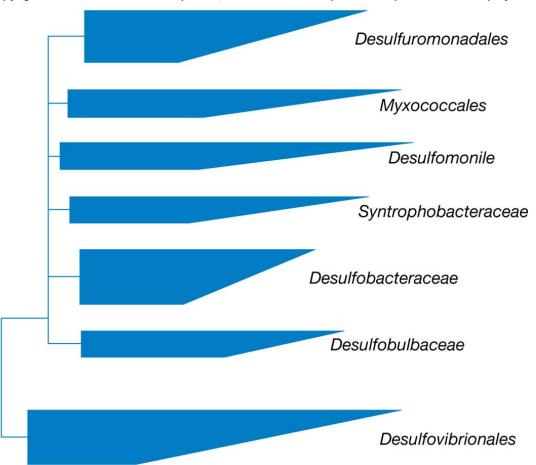
– enteric bacteria or enterobacteria


- facultative anaerobes
- chemoorganotrophs that degrade sugars by glycolytic pathway

 - can cleave pyruvate to yield formic acid (formic acid fermentation)

Family *Enterobacteriaceae...*

- two groups based on fermentation products
 - majority are mixed acid fermenters
 - produce lactate, acetate, succinate, formate, and ethanol
 - others are butanediol fermenters
 - butanediol, ethanol, and carbon dioxide


Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Family Enterobacteriaceae...

- biochemical tests used to distinguish genera in addition to morphology, motility, growth responses
- very common, widespread, and important

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Table 20.7

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Table 20.7 Some	Characteristics of Se	lected Genera in	the Enterobacteria	aceae	
Characteristics	Escherichia	Shigella	Salmonella	Citrobacter	Proteus
Methyl red	+	+	+	+	+
Voges-Proskauer	-	-	-	-	d
Indole production	(+)	d		d	d
Citrate use	-	-	(+)	+	d
H ₂ S production	-	-	(+)	d	(+)
Urease	-	-	-	(+)	+
β-galactosidase	(+)	d	d	+	-
Gas from glucose	+	-	(+)	+	+
Acid from lactose	+	-	(-)	d	—
Phenylalanine deaminase	-	-	-	-	+
Lysine decarboxylase	(+)	-	(+)	-	-
Ornithine decarboxylase	(+)	d	(+)	(+)	d
Motility	d	-	(+)	+	+
Gelatin liquifaction (22°C)	-	-	-	-	+
% G + C	48-59	49-53	50-53	50-52	38-41
Genome size (Mb)	4.6-5.5	4.6	4.5-4.9	Nd ^d	Nd
Other characteristics	$1.1-1.5 \times 2.0-6.0 \ \mu m$; peritrichous flagella when motile	No gas from sugars	$0.7-1.5 imes 2-5 \ \mu m;$ peritrichous flagella		$0.4{-}0.8 imes1.0{-}3.0\ \mu\text{m};$ peritrichous flagella

* (+) usually present

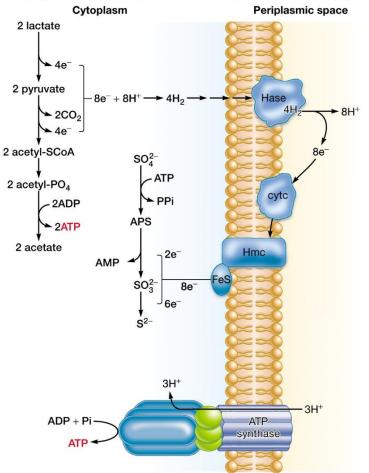
^b (-) usually absent
^c d, strains or species vary in possession of characteristic
^d Nd: Not determined; genome not yet sequenced

Escherichia coli

- probably best studied bacterium
- inhabitant of intestinal tracts of many animals
- used as indicator organisms for testing water for fecal contamination
- some strains are pathogenic
 - gastroenteritis
 - urinary tract infections

Important Pathogenic Enteric Bacteria

- *Salmonella* typhoid fever and gastroenteritis
- *Shigella* bacillary dysentery
- Klebsiella pneumonia
- Yersinia plague
- *Erwinia* blights, wilts, etc., of crop plants


Order Pasteurellales

- one family, *Pasteurellaceae*; six genera
- small, nonmotile, oxidase positive
- important pathogens
 - *Pasteurella multiocida* fowl cholera
 - *Pasteurella haemolytica* pneumonia in cattle, sheep, and goats
 - Haemophilus influenzae variety of diseases, including meningitis in children; vaccine available

Class Deltaproteobacteria

- contains eight orders and 20 families
 - divided into two general groups
 - aerobic, chemoorganotrophic predators
 - anaerobic, chemoorganotrophic sulfurand sulfate-reducers

Table 20.8

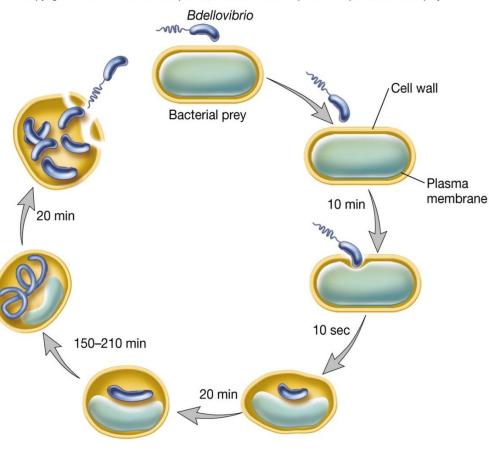
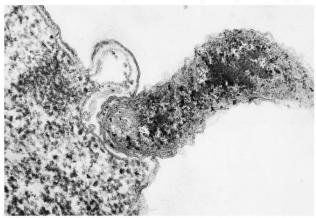

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Table 20.8 Characteristics of Selected δ - and ε -Proteobacteria G + C Content Oxygen Class Dimensions (µm) and Genus Morphology (mol%)Requirement **Other Distinctive Characteristics** δ -Proteobacteria Preys on other gram-negative bacteria Bdellovibrio $0.2-0.5 \times 0.5-1.4$; comma-49.5-51 Aerobic shaped rods with a sheathed where it grows in the periplasm; alterpolar flagellum nates between predatory and intracellular reproductive phases Desulfovibrio $0.5-1.5 \times 2.5-10$; curved or Oxidizes organic compounds to acetate 46.1-61.2 Anaerobic sometimes straight rods, motile and reduces sulfate or sulfur to H₂S by polar flagella Desulfuromonas $0.4-0.9 \times 1.0-4.0$; straight or Reduces sulfur to H₂S, oxidizes acetate to 54-62 Anaerobic slightly curved or ovoid rods, CO₂; forms pink or peach-colored colonies lateral or subpolar flagella $0.4-0.7 \times 2-8$; slender rods with Aerobic Forms fruiting bodies with microcysts Myxococcus 68 - 71tapering ends, gliding motility not enclosed in a sporangium $0.7-0.8 \times 4-8$; straight rods with 67-68 Stalked fruiting bodies with sporangioles Stigmatella Aerobic tapered ends, gliding motility containing myxospores $(0.9-1.2 \times 2-4 \,\mu\text{m})$ ε-Proteobacteria $0.2-0.8 \times 0.5-5$; spirally curved Microaerophilic Carbohydrates not fermented or oxidized; Campylobacter 29 - 47cells with a single polar flagellum oxidase positive and urease negative; found in intestinal tract, reproductive orat one or both ends gans, and oral cavity of animals Helicobacter $0.2-1.2 \times 1.5-10$; helical, curved, 24-48 Microaerophilic Catalase and oxidase positive; urea or straight cells with rounded rapidly hydrolyzed; found in the gastric ends; multiple, sheathed flagella mucosa of humans and other animals


Orders *Desulfovibrionales, Desulfobacterales,* and *Desulfuromonadales*

- strict anaerobes
- sulfur- or sulfate-reducing bacteria
 - use sulfur and sulfate as electron acceptors during anaerobic respiration
 - electron transport chain used to generate ATP
- widespread in muds and sediments of aquatic environments, including sewage treatment systems
 - important in sulfur cycling in ecosystems

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Copyright C The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Courtesy Dr. Jeffrey C. Burnham

Copyright C The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Courtesy Dr. Jeffrey C. Burnham

Order Desulfuromonales

- all strictly anaerobic with respiratory or fermentative metabolism
 - chemolithotrophs, chemoorganotrophs
 - mesophilic, marine, and fresh water
- environmentally important
 - conserve energy from dissimilatory metal reduction including toxic and radioactive metals
 - synthesize nanowires
 - electricity generated by microbial fuel cells

Order *Bdellovibrionales*

- one family, *Bdellovibrionaceae*; four genera
 - best studied is *Bdellovibrio*
 - aerobic, gram-negative, motile curved rods
 - predatory bacteria life cycle that resembles bacteriophages in many ways
 - collides with prey, bores hole through cell wall, disrupts plasma membrane

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display Vegetative Fruiting Fruiting body Myxospore

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display o^h 8 hr

Jerry M. Kuner and Dale Kaiser, Fruiting body morphogenesis in submerged cultures of Myxococeus xauthus, J. Bacteriol. 151, 458–461, 1982

Order Myxococcales


- contains five families distinguished based on shape of vegetative cells, myxospores, and sporangia
- gram-negative, rod-shaped gliding bacteria
- aerobic chemoorganotrophs with respiratory metabolism
 - most are micropredators or scavengers that lyse bacteria and yeasts by secretion of digestive enzymes
 - most use amino acids as major source of C, N, and energy

Myxobacteria

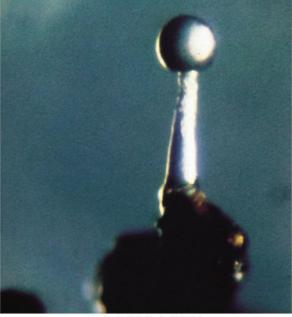

- distinctive life cycle which resembles that of cellular slime molds
- in presence of food form a swarm and migrate on solid surfaces
- form a fruiting body when nutrients are exhausted
 - involves at least 5 extracellular signaling molecules which allow cells to communicate with each other

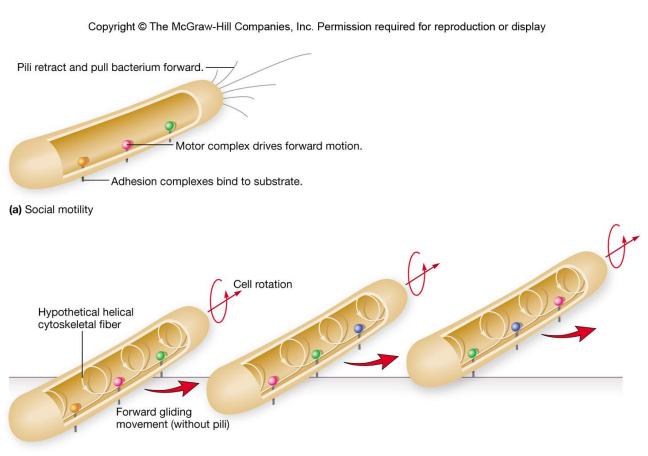
Figure 20.35

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

© M. Dworkin-H. Reichenbach/Phototake


© M. Dworkin-H. Reichenbach/Phototake

© Patricia L. Grillione/Phototake

Fruiting Bodies

- formation requires gliding motility and involves at least 5 extracellular signaling molecules which allow cells to communicate with each other
- range in height from 50 to 500 μm
- colored by carotenoid pigments
- vary in complexity
- some cells develop into myxospores

Figure 20.36

(b) Adventurous motility

Myxospores

- frequently enclosed in walled structures called sporangioles (sporangia)
- dormant and desiccation-resistant

– may survive up to 10 years

M. xanthus Gliding Motility

- social (S) motility twitching motility
 - governed by production of retractable type IV pili
 - when pili retract, cell creeps forward
 - requires cell to cell contact for pili
- adventurous (A) motility
 - single cells that leave the group
 - involved in slime secretion and clusters of motor proteins in contact with substrate

Figure 20.37

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Annette Summers Engel, Ph.D

Class Epsilonproteobacteria

- smallest of proteobacterial classes
- probably two one orders, *Campylobacteriales* and *Nautiliales*; three families
- slender gram-negative rods

Genus Campylobacter

- Campylobacter fetus
 - reproductive disease and abortions in cattle and sheep
 - septicemia and enteritis in humans
 - septicemia pathogens or their toxins in blood
 - enteritis inflammation of intestinal tract
 - Guillain-Barre syndrome triggered in molecular mimicry
- Campylobacter jejuni
 - abortions in sheep
 - enteritis diarrhea in humans

Genus Helicobacter

- at least 23 species isolated from stomachs and upper intestines of mammals
- e.g., *Helicobacter pylori*
 - causes gastritis and peptic ulcer disease
 - motility important for colonization
 - does not grow below pH 4.5
 - urease converts urea to ammonia and CO₂
 - urea hydrolysis appears to be associated with virulence

Epsilonproteobacteria...

- newly discovered are thermophilic, chemolithoautotrophic, and others
- found in marine hydrothermal vents, terrestrial springs, ground water, oil-field brines, limestone caves, sulphidic springs
- found in filamentous microbial mats in anoxic, sulfide-rich cave springs

Table 20.9

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Table 20.9Some Recently Isolated ε -Proteobacteria

Species	Isolation Site	Optimum Growth Temperature	Carbon Metabolism	Electron Donor	Electron Acceptor	Sulfur/Nitrogen Reduction Product
Nautilia litho- trophica	Hydrothermal vent	52°C	Heterotroph	H ₂ , formate	SO_3^{2-}, S^0	H ₂ S
Caminibacter hydrogeniphilus	Hydrothermal vent	60°C	Heterotroph	H ₂ , complex or- ganic compounds	NO_{3}^{-}, S^{0}	H ₂ S, NH ₃
Nitratiruptor tergarcus	Hydrothermal vent	55°C	Autotroph	H ₂	O_2 , (microaerobic), NO_3^- , S^0	H_2S , N_2
<i>Sulfurospirillum</i> sp. str. Am-N	Hydrothermal vent	41°C	Heterotroph	Formate, fumarate	S ⁰	H ₂ S
<i>Arcobacter</i> sp. str. FWKO B	Oil-field production water	30°C	Autotroph	H_2 , formate, HS^-	O_2 , (microaerobic), NO_3^{-} , S^0	H_2S , N_2O^-
Sulfuricurvum kujiense	Oil-field production water	25°C	Autotroph	H_2 , HS^- , $S_2O_3^{2-}$, S^0	O ₂ , (microaerobic), NO ₃ ⁻	NO_2^-

From Campbell, B. J., et al. 2006. The versatile &-proteobacteria: Key players in sulphidic habitats. Nature Rev. Microbiol. 4:458–67.